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Hereby, I confirm (according to the Prüfungsordnung of July 12, 1996, §20(5)) having
composed this diploma thesis alone, using no other than the mentioned sources and tools.
Citations have been marked.
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Though the mountains divide
And the oceans are wide
It’s a small world after all

R. M. and R. B. Sherman
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1. Introduction

1.1. Networks

In recent times, hearing the word network
immediately arouses the idea of physically
wired networks as those formed by tele-
phone lines or computer links. Though, net-
work is a concept a good deal more general
than only this.

Mathematically spoken, networks are
graphs, i.e. a set of nodes (of whatever
kind) connected by edges (links, connec-
tions) between certain pairs.

This abstraction has been known for a
long time. Probably the first paper of graph
theory was written by Euler [1], the so-
called “bridge problem of Königsberg”. Eu-
ler discusses whether or not it is possible
to make a round walk, passing of each of
Königsberg’s nine bridges exactly once (fig-
ure ??).

The concept of networks can be applied
to lots of theoretical or experimental sub-
jects [2–4], nodes being people [5], Internet
servers [6], scientists [7, 8] or others, the
range of links comprises e-mails [9], friend-
ships [5], citations [10, 11] and more.

Thus, there are numerable different kinds
of networks, physical ones (e.g. hard wired)
as well as logical (e.g. dependencies) or
social ones (e.g. contacts, friendships),
stretching out to topics far from wired net-
works [9, 12]. The area is under vigorous
research. Good reviews can be found in [2–
4, 13, 14].

1.2. Six Degrees of Separation

Out of personal experience, nearly every-
body has been confronted with what we call
small world effect. There are numerous ex-
amples:

At a party, we find out to know some
stranger we just started talking to by only a
few middle-persons (or technically spoken
we are only separated from him by a low
degree). E.g., he could be our street neigh-
bors’ colleague’s son. We hear “My god,
how world is small”.

Rumors are another example. We are as-
tonished to experience the pace at which
they spread. After a few hours and thus
only a few possibilities of telling rumors to
others, whole city seems to know.

Milgram [15] made an experiment on
this. He instructed a set of people to try
to send a letter to some stranger, only by
using personal contacts. He found out that
an astonishing short chain of social links is
needed for this task, which entered in every-
day’s language as Six Degrees of Separa-
tion. Recently, this has been reviewed on
a more popular basis by a German weekly
newspaper [5].

1.3. Small World Effect

Six Degrees of Separation is only one man-
ifestation of a more general principle: the
small world effect [16–18].

Observations of many real-world net-
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1. Introduction

Figure 1.1.: Königsberg bridge problem: Is it possible to make a round trip, passing each bridge exactly
once? [1]

works in computer science, biology, chem-
istry, linguistic, sociology, etc. have re-
vealed a crucial difference from regular lat-
tices.

Regarding average (or sometimes max-
imum) path lengths on such networks, we
would expect to see an increase linearly with
the number of nodes. Instead, we examine
distances growing logarithmically with sys-
tem size.

This behavior is not only an amus-
ing effect but has far-spreading conse-
quences [19]. Prominent examples are In-
ternet’s stability against attacks [20], dis-
ease spreading [21, 22] or path finding

strategies [23, 24].

1.4. Science Collaboration
Networks

In context of science, the network between
scientists as nodes of the graph is of par-
ticular interest. This network belongs to
the group of social ones, with humans as
nodes. Unlike many other forms of social
relationships, that are mostly quite difficult
to capture objectively, the field of published
papers is very widespread covered by the
Science Citation Index [25] and so easily
available to research.

8



2. Network Models

There are many types of networks com-
peting to describe observations made in
socio-physics. After discussing which mea-
surements describe a given networks struc-
ture, we will give a short overview about
what we think to be the most important
ones and discuss advantages and possible
disadvantages.

2.1. Measurements

2.1.1. Small World Effect

As illustrated in the introduction, we are
interested in the correlation of network size
and average (maximum) path lengths. We
investigate if there is linear, logarithmic or
other behavior. In case of a logarithmic one,
the net is said to show the Small World
Effect.

2.1.2. Clustering

In friendship network, we find friends of one
person often to be friends themselves. This
is true for most social networks and even
other ones. Links are not spread randomly
but arranged in clusters.

To describe thing mathematically, we in-
troduce a clustering coefficient Ci of a node
i describing the portion of m established
links between all ki next neighbors com-
pared to the maximum possible number of
M =

(m
2

)
, i.e.

Cn =
m

M
.

This value is averaged over all vertices to
give a clustering coefficient C for the whole
network.

Typical values experienced are far above
results expected for random networks [2, p.
50].

2.1.3. Scale-Free Behavior

A third observation regarding social net-
works is its distribution of degrees. Regard-
ing frequency of vertices of given coordina-
tion numbers, we do not find an exponential
but a power law [26].

In all, we have three possible means
to classify networks. Many social graphs
show small path lengths, high clustering
and scale-free behavior.

2.2. Regular Lattices

The simplest form of a lattice is a symmet-
rical formation of nodes connected by edges
between all pairs (or all pairs of adjacent)
nodes as shown in figure 2.1a,b. Reasons
to choose this linking are e.g. to simulate
neighborship in a town etc.

Such network show a high degree of clus-
tering, as wished. The average path lengths
are very long, though and scale with sys-
tem size. So, small world behavior cannot
be found which makes the model inappro-
priate for our needs.

9



2. Network Models

Figure 2.1.: network types: a, b regular lattices, c random network, c scale-free graph [14]
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2.5. Barabási-Albert Network Model

2.3. Erdős-Rényi Random
Networks

Random networks are the extremum on the
other side of the spectrum. A number of
nodes is wired by pure chance, i.e. we throw
the dices to select two nodes and place an
edge between them.

Such graphs have been first proposed by
Solomonoff and Rapoport [27] and have
been extensively studied by Erdős and Rényi
[28]. Actual results have been reviewed in
[29]. A typical result can be seen in fig-
ure 2.1c.

We find that average path lengths behave
logarithmically with network size. While
this is as desired for small world simulation,
obviously there is no clustering.

2.4. Watts-Strogatz Small-World
Networks

The idea is plausible to try combining both
presented models to sum up their corre-
sponding advantages. A big step towards
this goal was done by Watts and Strogatz
[16].

Their model starts with a circular graph
that is regularly wired (figure 2.2). Step
by step, edges are chosen by chance and
rewired to an arbitrary destination node.
Thus, a small fraction of links are long-
range ones. To illustrate, this could be
habitants of a street of neighbors having
relationships with far-away relatives.

At first, the model seems to fulfill our de-
sires. It shows small average path lengths as
well as high clustering. Looking at the de-
gree distribution, i.e. the frequency of nodes

Figure 2.3.: Barabási and Albert [30]

of a certain degree, we find strong differ-
ences from real-world data as there is no
scale-free behavior.

2.5. Barabási-Albert Network
Model

Barabási and Albert [30] started a new idea.
Their model consists of two ingredients:
growth and preferential attachment.

We start with a graph of m0 = 3 vertices,
each one connected to each other. Now, in
each time step, we add a node that is con-
nected to others by m = 3 links. The new
node being one side of the links, the other
one is chosen at random from the existing
network. The probability of a vertex being
selected is proportional to the number of
links already attached to it.

To stay in the image: If you already have
lots of friends, you are more likely to get
new ones. “The rich get richer.”1

These rules result in a network (fig-
ure 2.1d) that is capable of reproducing
small-world behavior, as well as being scale-
free. Research has found good collapse with

1 “Whoever has will be given more, and he will
have an abundance.” [31].
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2. Network Models

(b) (c)(a)

Figure 2.2.: Watts-Strogatz network model: We start with a regular lattice (a) formed to a ring (b)
and re-wire a small fraction of links to random destinations (c) [18]

empirical networks, included e.g. the world
wide web [6]. Good introductions can be
found in [32, 33].

Clustering is present to a certain degree,
but still much too small regarding experi-
mental values.

2.6. New Approaches

Recently, new network models have been
developed to cope with inconveniences en-
countered with present ones.

Ravasz and Barabási [35] examined net-
works of a self-similar structure imitating
the idea of hierarchical organization in soci-
ology. Combining high clustering and scale-
free behavior, their model does not show
short path lengths, though.

Klemm and Egúiluz [34]2 developed an
auspicious model joining all three demands
in one network. The authors present a gen-
eralization of the Barabási-Albert model,
adding aging of nodes and some random
behavior.

There will be further research to be done

2cf. also [36]

on this model to verify if it copes with re-
ality.

An overview of all models can be found
in figure 2.4.
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2.6. New Approaches

scale−free

high clustering

Klemm−Eguiluz

Barabasi−Albert

regular lattice

path lengths
short average

small world
Watts−Strogatz

hierarchical model
Ravasz−Barabasi

random network
Erdos−Renyi

Figure 2.4.: overview over recent network models (Erdős and Rényi [28], Watts and Strogatz [16],
Barabási and Albert [30], Klemm and Egúiluz [34], Ravasz and Barabási [35])
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2. Network Models
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3. Empirical Collaboration Network

In context of science, the network be-
tween scientists as nodes of graph is of par-
ticular interest.

3.1. Typology

First, we want to deal with the definition
of a collaboration graph. As to the nodes,
we have the choice to identify each vertex
either with an author or with a paper.

The second possibility is also area of re-
search [37], but we think studying the rela-
tionship of scientists as the paper’s authors
offers more insight in how research works.
So we will make each scientist a node of
our network.

As what concerns the edges, there are ba-
sically two possible choices—both covered
equally by the database used [25].

3.1.1. Citation Graph

We might chose to consider citations from
one author to another as links [10], thus
resulting in a directed graph.

Starting at a given paper, we can enlarge
our network by following links recursively
up to a certain depth, e.g. by depth-first
or width-first algorithms. Each new work
will cite several to many still un-included.
Roughly spoken, the number of publications
to include will raise exponentially with the
maximum depth chosen.

Quickly, we arrive at huge amounts of
data. Additionally, there is no canonical

end of the hunt for new links. In the ex-
treme case we could be caught in a giant
cluster containing all or nearly all of the pa-
pers ever published. We see no possibility to
narrow this down in a reasonable way with-
out fear of introducing arbitrary boundary
conditions.

3.1.2. Collaboration Graph

Second possibility to define edges of a graph
is creating links by co-authorship in one or
several papers [7, 8]. If n scientists pub-
lish a paper together, they are connected
to each other by

(n
2

)
edges.

As an additional advantage, we have the
choice to start with an arbitrary set of au-
thors, establishing links between them by
looking at all papers they are involved. This
will result in a graph of limited size.

Of course, we should think carefully
about reasonable selection, to avoid edge
effects. We will discuss this in the next sec-
tion.

3.2. Building the net

3.2.1. Proceeding

As solution, we choose the following pro-
ceeding: We start with one paper. As one
part of our work will be the comparison
of real world data to Barabási-Albert net-
works, we take the corresponding paper [30]
as center of investigation.

15



3. Empirical Collaboration Network

In order to determine the set of authors
we want to deal with, we select all 185 pa-
pers that cite this paper.1 Secondly, we
construct a list of unique authors from all
these papers. A first approach delivers 559
scientists, whereof some turned out to be
identical but appearing in particular papers
with typos. We finish with a set of 555
authors to whom we attribute consecutive
numbers.

The last step of the network creation pro-
cess consists in establishing links between
all these authors. This is done by selecting
one paper after the other and introducing
connections between each possible pair of
this paper’s authors (i.e.

(n
2

)
links for n au-

thors).

Eventually, this gives us a graph of 555
nodes representing scientific collaboration
in the area of Barabási-Albert networks.

The network size is relatively small com-
pared to all data in the Science Citation
Index [25] (approx. 107 papers). Studying
properties of this subnet, we hope getting
an insight to what leads to the structure
observed. Verification with bigger networks
remains a task for the future.

3.2.2. Visualization

To get an idea of what we are dealing about,
we visualize the graph using a spring model
[38, 39]. In order to give manageable results
we remove a paper on the Human Genome
Project [40] with 274 authors. Brief exami-
nation yields that this is no harm, as scien-

1We have to be careful not to mix citation data
from different dates as new papers are continu-
ously added to the database. Base of our inves-
tigation is October 21st, 2002.

tists participating in this work did not co-
operate with others in our graph, and form
a big cluster on their own. The result is
shown in figure 3.1.

3.3. Analysis

3.3.1. Authors per paper

authors frequency
1 37
2 69
3 47
4 21
5 6
6 4
7 1

Table 3.1.: Authors per paper

First thing we are interested in is the fre-
quency distribution of papers per author.
We expect to see many papers with few au-
thors and vice versa (table 3.1).
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70

1 2 3 4 5 6
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nc
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number of authors

~x^3.58*exp(-x/0.54)
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Figure 3.2.: frequency distribution of the number
of authors per paper
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3.3. Analysis

net of cooperation

458
2498

201

40

1

15 124

296457

30

345

422

4

209

307

393

6
470

245

274

272

7

27

223

224

371477

41

102

105

134

338

359

398

425

453

482
492

529

251

181

530

9

383

401

480

12
271

463

13312

334

434

17

52

18
107

154
177

20

37

164

429

433

24

308

350

99

314

26

385

38

267

408

290

400

39

318

43

386

47

405

454

484

49

145
50

212

449

51
122

5587

270

57

62

315

389

58

204
258

365

461111

504

156

226

61

220
452

339

68

79

404

69

215

332

478

74

502

77

375

498

80

199202

222

336

81

92

82

306

84

128

187

554

85

185

86

117

317

94

129

95

264
479

552

96275

346555

101

179

110
113

292 431

243

378 488

116

165

329

418

120

171

219

436

472

512

123
344

125

259

130
205

136

494

138

153160

280 384257

142

213 406

143

197

144

246

343

370

373374

147

440

485

151
309

395

163

237
252

234
255

253

254

283

166
341

377

491

381

167

302
416

169

320

217

239

218

269

230

423493

232233

282
235

278 430

435

241

263515

265

444

273

533

279

316

285

486

536

299
390

466

301

322

319

450

542

361
380

372

421

376

469
506

391

411

451

524

Figure 3.1.: collaboration network with 555 nodes (plotted using GraphViz package [38, 39])
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3. Empirical Collaboration Network

Indeed, the considered graph (figure 3.2)
shows this behavior with one remarkable ex-
ception. There are much too few papers
written by only one author. This could be
due to the fact that collaboration helps in
science, but the more (scientific!) partners
you have, the slower gets your scientific out-
put as communication overhead increases.

In other words: establishing scientific re-
lationships with other authors is not easy.
You have to agree on the field of research,
coordinate your efforts etc. Postulating
that cooperation with more scientists is al-
ways favorable, we can explain the statistics
by difficulty of finding new partners. This
even increases corresponding to the num-
ber of co-workers you already have, as ad-
ditional coordination is needed. The risk of
research overlap raises, too.

The power law predicted by Lotka [11]
with an exponent of −2 cannot be con-
firmed. This could be due to insufficient
statistics for this test. Other recent stud-
ies of collaboration networks found an ex-
ponent of 2.1 or 2.4 [41] which is another
indication for statistical errors predominat-
ing our results of study.

3.3.2. Connections per author

Next, we study the number of connections
per author, which is the number of other
scientists an author ever published papers
with. This number is weighted by the num-
ber of papers, i.e. a coauthor with whom a
scientist published n papers contributes n
connections (table 3.2).

Again, we expect to see a frequency de-
crease with increasing number of connec-
tions. The experimental data (figure 3.3)

links weighted unique
0 16 16
1 51 67
2 75 69
3 61 67
4 24 27
5 21 22
6 10 2
7 5 6
8 4 3
9 2

10 3
11 1
13 2 1
14 1
15 1
17 1 1
20 2
29 1

273 274 274

Table 3.2.: Connections per author

0.01
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1

10

100

1 10

fr
eq

ue
nc

y

number of connections

x^-2.85
x^-3.53

Figure 3.3.: frequency distribution of the num-
ber of connections per author
(black:weighted—grey:unique)

shows smaller frequencies for “isolated” au-
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3.3. Analysis

thors that never publish with others as well
as for authors with only one coauthor. This
is comparable to the effect observed in the
last graph. The most productive seem to be
authors with two or three colleagues they
are working with.

Statistical data in the area of highly con-
nected authors shows a truncated power
law. The exponent of approximately −2.85
falls well in the region bounded by analysis
of other scale-free networks (www: around
2.3 [6, 26, 42]). The sharp or exponen-
tial cutoff at very high connection numbers
has been reported for other networks, too
[7, 43]. Mossa et al. [44] offer an expla-
nation using a model with limited (local)
information on the network. Surely, no sci-
entist knows all others, so this could lead
to the observed effect.

3.3.3. Double vs. unique links

We are interested how things change when
we cease weighting connections by num-
ber of papers published together, i.e. we
only take into account how many other
unique scientists a researcher published pa-
pers with. Results can be found in table 3.2.

We see that despite the different num-
bers, results are qualitatively the same. Sci-
entists working together with two other au-
thors are the most productive.

Depending on whether your glass is half
full or half empty there are two contrary
explanations:

1. It is common practice that you name
persons as authors of your work that
did not contribute to it, out of a feeling
of debt, may it be sponsors or others.

2. Science lives from cooperation. Work-
ing together on one subject increases
scientifical output whilst reducing er-
rors.

The author of this paper will not judge.

3.3.4. Cluster sizes

size frequency
1 16
2 28
3 15
4 13
5 2
6 3
7 2
8 2
9 2

10 1
26 1

274 1

Table 3.3.: Cluster sizes

Our last focus is on subnets of science
that exist in our net of collaboration. Au-
thors group into several clusters by connec-
tions established between them. We inves-
tigate the frequency of clusters of a given
size. Our expectation is getting a frequency
increase for growing cluster sizes up to a
peak, and then a decay as clusters grow
very big, comparable to the statistics we
saw already.

The experimental data (table 3.3, fig-
ure 3.5) shows this behavior, but with one
surprise: although the most frequent cluster
size is 2 due to a big number of publications
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20



3.4. Comparison

0.01

0.1

1

10

1 10

fr
eq

ue
nc

y

cluster size

x^-2.61
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with two authors, most scientists maintain
collaboration with three others.

The can only be due to scientists be-
ing member of research groups involved in
different themes, thus connecting different
clusters formed by single papers. This can
directly be verified by the graphical repre-
sentation (figure figure 3.4) of the clusters,
ordered by size.

3.4. Comparison

We have collected some statistical figures
to express the structure of the network in
concern. Now we want to find out whether
classical or current network models bear
similar results.

3.4.1. Erdős-Rényi random graphs

Connections per author In a random
graph the distribution is a binominal one,
i.e. the probability of a node with k con-

nections in a net with N nodes is

P (k) ∝
(
N − 1
k

)
pk(1− p)N−1−k.

In the limit of large N this approaches a
Poisson distribution around the expectation
value 〈k〉 = pN

P (k) ∝ e−〈k〉
〈k〉k

k!
.

This is contrary to the power-law statistic
observed in the collaboration network.

Cluster sizes For random graphs, perco-
lation theory predicts that the cluster size
distribution shows an exponential decay for
big cluster sizes [2, 45].

Again, the considered network show
rather a power-law decay than an exponen-
tial one.

Unsurprisingly, the structure of scientific
collaboration differs basically from that of
a random network.

3.4.2. Watts-Strogatz small-world
networks

Connections per author The degree
distribution of Watts-Strogatz small-world
networks is similar to that of a random
graph [2]. It has a peak and decays ex-
ponentially for large connection numbers,
contrary to the collaboration network.

Cluster sizes The usual case in Watts-
Strogatz networks is re-wiring of only a
small portion of links. Thus, the network
stays well connected, mostly forming one
giant cluster.
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3. Empirical Collaboration Network

This model does not describe scientific
collaboration as well.

3.4.3. Barabási-Albert networks

Connections per author Barabási-
Albert networks show a vertex degree
distribution as P (k) ∝ k−3 [30, 46].

In our science collaboration network we
found out exponents of 2.85 resp. 3.53
which is only a slight deviation.

Cluster sizes In Barabási-Albert net-
works, new sites are added with links to
already existing nodes. Consequently only
one giant cluster forms. Obviously this dif-
fers crucially from the net of co-authorship.
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4. Spin models

4.1. Leadership effect

4.1.1. Ising model

In 1925, Ising [47] published a paper on a
model of spin interaction that later became
very famous. The idea to this had been
given to him by his teacher Lenz [48], so it is
sometimes referenced as Lenz-Ising model.1

The idea is to consider spins (e.g. on a
square lattice) and an interaction Hamilto-
nian

H = −
∑
i6=j

Ji,jSiSj

where Si are the spins and Ji,j is a matrix
describing the interaction forces. Usually
we consider the case

Si,j =

{
J : i, j nearest neighbors
0: else,

i.e. only allow equal interaction between
nearest neighbors (J > 0 for ferromagnetic
behavior).

In the following chapter, we investigate
how such a model behaves on our con-
structed collaboration network.

1

A generalization of the Ising model is the Potts
model [49, 50]. Instead of Ising spins with two
possible states +1 and −1, Potts allows k ≥ 2
different spin values. The Hamiltonian is

H = −J
∑
i6=j

δi,k,

i, j being nearest neighbors.
Applying it to the scientific network, I find re-

sults very similar to those of Ising’s model.

Figure 4.1.: Ising [47]

We use a Metropolis [51] Ising model,
i.e. probabilities for a single spin flip of
p ∝ e−∆E/kBT if ∆E > 0 and 1 otherwise.
To determine ∆E we sum up spins of all
vertices connected to a given node. In prin-
ciple, we have the choice between two pro-
ceedings:

• consider only unique links between two
nodes

• count a connection several times ac-
cording to the number of links, i. e.
the number of papers the correspond-
ing authors published together.

Both possibilities have been examined.2

2change the switch NODOUBLE in line 17 of source
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4. Spin models

4.1.2. Phase transition

The results of both experiments show qual-
itative similarity. We observe a rounded
phase transition at about kBT/J = 0.8 op-
posed to a value of about 2.3 on the regular
square lattice.

A closer look reveals that decay of mag-
netization with raising temperature is ex-
ponential. This result corresponds to re-
search on Ising models on Barabási-Albert
networks by Aleksiejuk, Ho lyst, and Stauf-
fer [52], who also found an exponential law.

Anyhow, the critical temperatures found
by me and by Aleksiejuk et al. [52] differ
by more than one order of magnitude. This
can easily be explained by different coor-
dination numbers in both networks. The
collaboration graph holds a maximum of 14
neighbors of a single vertex, the graph of
Aleksiejuk et al. [52] exceeds this by sev-
eral orders of magnitude. This makes it far
more “difficult” to break the ferromagnetic
bonds, resulting in a higher critical temper-
ature.

4.1.3. Degree distribution

Dorogovtsev et al. [53] studied random
graphs with given degree distributions P (k)
of a vertex of degree k. They deduced an
estimate for the critical temperature of an
Ising model on such networks as

J

kBTc
=

1
2

ln

(
〈k2〉

〈k2〉 − 2〈k〉

)
.

Considering the collaboration network as
a random graph with given degree distribu-
tion (table 4.1), we use their formula and

code in section B.1

degree several unique
0 16 16
1 51 67
2 75 69
3 61 67
4 24 27
5 21 22
6 10 2
7 5 6
8 4 3
9 2

10 3
11 1
13 2 1
14 1
15 1
17 1 1
20 2
29 1

Table 4.1.: Degree distribution

get Tc/J = 2.91, counting only unique links
between scientists. Using all links, we find
Tc/J = 5.46.

Both values are far from critical temper-
atures observed in simulation. This is a
strong clue towards the statement that col-
laboration networks are crucially different
from random networks, even with the same
degree distribution.

4.1.4. Spin flip model

Following a suggestion of Ho lyst3, we can
determine the importance of most con-
nected authors of our collaboration network
by successive flipping of most connected

3 personal correspondence, cf. [52]
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4.2. Cluster limited Ising models

spins and pinning them in their new posi-
tion.

In other words: After some time of equili-
bration, we chose the author who has most
connections to others, and change his/her
spin permanently to a value of −1, opposite
to all others (at T = 0, or nearly all others
else). Subsequently, we allow the system
to relax some time, after which we perma-
nently flip the second most connected spin,
and so on.

0

50

100

150

200

250

0 50000 100000 150000 200000 250000 300000

M

t

unique
multiple

Figure 4.2.: Ising model with successive spin flips.
After 105 steps of equilibration, we
flip the most connected spin and
stick it to its new value. After some
relaxation of 104 steps, this step is
repeated. Network with multiple and
network with unique links used. Av-
eraged over 1000 runs. T = 0.2.

Results are shown in figure 4.2. We ob-
serve two things:

1. Even after switching 20 most con-
nected spins, the system does not flip
in the opposite state with all spins
pointing down. In simulations of Alek-
siejuk et al. [52], less than 6 spins
were enough to flip a whole network
of 30, 000 nodes.

This is quite obviously due to the fact
that we don’t have a contiguous graph,
but one consisting of different clusters.
A spin flip in one cluster is not able to
affect spins in others.

In pictures of spins representing opin-
ions (yes/no, etc. [54]), this means a
few authors with view differing from
the broad mass of scientists are hardly
capable of changing the global opinion,
may they even be the most connected
(known) ones.

2. Allowing multiple links in our net,
we expect the magnetization to break
down much faster, as a flip of a spin is
able to influence others in a stronger
way.

Yet, the simulation shows contrary
results. The graph containing only
unique links shows a much steeper de-
cay of magnetization (figure 4.2).

Possible explanation is the fact, that
choosing most connected spins in a
network only having unique links picks
authors with connections to many
other authors, whereas in a network al-
lowing multiple links, there are as well
spins connected in a strong manner to
only few others.

It seems that in order to spread new
opinions, it is more advantageous to
have small influence on many other
people than a big impact on only few
ones.

4.2. Cluster limited Ising models

The network we are looking at consists of
many distinct clusters of different sizes (fig-
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4. Spin models

ure 3.4). We may ask if they differ regard-
ing their properties, or if they behave alike.

4.2.1. Proceeding

We split up the network into sub-nets, each
containing one cluster, numbered sequen-
tially, 2, 3a, 3b,. . . 26 (numbers and letters
as in figure 3.4).

On each net, we run an Ising model
for temperatures from 0.1 to 6.9 in 0.2
steps. Each of these simulations runs for
106 steps, with magnetization measured ev-
ery 100 steps, thus resulting in 104 mea-
surements per run, to give good statistics.

4.2.2. Results
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
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kT/J

Figure 4.3.: Ising model on the different clusters
of a collaboration net, averaged over
104 measurements per temperature
and net.

Examining the results (figure 4.3), we see
different curves that all decay with raising
temperature, but show no apparent similar-
ities. We wonder why the curves seemingly
do not converge to zero but to finite values.

Obviously, the network is so small that
macroscopic magnetization flips occur fre-
quently, even at moderate temperatures.
That means, expectation value of magne-
tization4 at high temperatures is not zero,
but something around one!

4.2.3. Bias adjustification

To validate this hypothesis, we simulate the
networks at very high temperature (kBT/J =
50), in order to determine M∞ = M(T =
∞) (table 4.2).

net M∞
2 1.03

3a 1.71
3b 1.51
4a 1.59
4b 1.54
4c 1.55
5a 2.02
5b 1.96
6a 2.00
6b 1.94
7a 2.27
7b 2.23
8a 2.26
8b 2.29
9a 2.55
9b 2.55
10 2.54
26 4.25

Table 4.2.: Bias

4 all over this publication we consider the (un-
signed) value |M | as magnetization, not M !
Doing the latter leads to false results. E.g. at
low temperatures, averaging M over very long
times would give zero, as flips of the whole sys-
tem occur (though at very low probabilities).
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4.2. Cluster limited Ising models

Using these values, we rescale our simu-
lation results from figure 4.3 by use of the
scaling function5

M

N
−→ M −M∞

N −M∞
,

where N is the total number of authors in
the cluster (figure 4.4).
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26

Figure 4.4.: Same data as in figure 4.3 but ad-
justed to a common scale from 0 to
1 by eliminating bias from random
fluctuations.

We find a much cleaner image. Apart
from one exception (6b) all curves are par-
allel up to the M = 0.5-line, and even be-
yond there are very few crossings.

Each different cluster can now be char-
acterized by the temperature ϑ at which it
achieves M = 0.5. This leads to a sort of
“melting temperature” (table 4.3).

To get an idea of this temperature’s
meaning, we sort the cluster’s graphical rep-
resentations by ϑ (figure 4.5).

Is seems plausible that ϑ is a measure
of coherence or connectiveness of a clus-

5 This function is a linear approximation that gives
1 for M → N and zero for M →M∞.

net ϑ
2 1.7

3a 2.8
3b 1.5
4a 3.3
4b 2.1
4c 2.6
5a 4.0
5b 2.2
6a 4.8
6b 3.5
7a 2.8
7b 1.8
8a 2.5
8b 3.7
9a 2.2
9b 3.1
10 1.9
26 3.8

Table 4.3.: Melting temperatures

ter. Single bonds lead to lower melting tem-
peratures, fully connected subsets to higher
ones.

This offers a possible explanation why 6b
shows a different behavior from all others
in figure 4.4: This cluster consists of two
parts. One of them is a completely con-
nected set of five nodes, the other one a
single vertex. Both are linked by one single
edge. Probably, this “conflict of interest”
leads to the observed anomality.

Additionally, connectedness described by
ϑ seems to be crucially different from the
classification given by standard clustering
coefficient. E.g. the net consisting of three
completely connected vertices 3a yields a
clustering coefficient of 1 but a low melting
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Figure 4.5.: collaboration clusters from figure 3.4, ordered by ϑ
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4.2. Cluster limited Ising models

temperature.

4.2.4. Linear Relationship

Surprisingly, we find a linear relationship be-
tween N and E/ϑ (figure 4.6). Thus, we
postulate

E

ϑ
= aN − b

and conclude a formula for ϑ:

ϑcalc(E,N) =
E

aN − b
.

Fitting parameters to our measurements
(yielding a = 0.72, b = 0.89), this gives
good prediction of melting temperatures.
Results can be seen in figure 4.7, as well
as a diagram showing errors being inferior
to 10% in most cases.

ϑcalc =
E

aN − b
N→∞−→ 〈k〉

2a
.

We see that, in the limit of high N , the
melting temperature ϑ is proportional to
the average number of edges per site 〈k〉 =
2E/N, a result known from mean field the-
ory.
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Figure 4.6.: E/ϑ vs. N shows a surprisingly linear correlation.
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5. Barabási-Albert network models

5.1. Modified Barabási-Albert
model

Network model of Barabási and Albert [30]
was introduced in section 2.5. We pointed
out that it shows rather good fits with em-
pirical networks, but lacks support for dis-
jointed ones, as the algorithm only delivers
one giant cluster.

Thus, to cope with networks consisting
of several components, we must modify the
model. We chose a very simple approach:
In each step of adding nodes, we start a new
cluster of m0 = 3 nodes with probability p.

Vertices added in consecutive time steps
can connect to any node in any component
respecting the same probability rule as in
the standard model.

• In the case m = 1, components can
only grow (isolated clusters), whereas

• in the case m > 1, new nodes are able
to connect two or more existing com-
ponents of the network (merging clus-
ters).

5.2. Simulation

In order to compare simulation results with
real-world data from a scientific collabora-
tion network [55], we let the network grow
up to the size of 555 nodes. For proper
statistics, this is repeated 104 times.

5.2.1. Isolated clusters

scale-free behavior In case of m = 1,
i.e. considering isolated clusters, we can be
sure to get scale-free behavior within the
distinct clusters, as the probabilities for at-
tachment of a new node to an existing one
are the same as in a single Barabási-Albert
network (modulo a constant factor due to
a new node having the “choice” between
different clusters to connect to).

However, complete network is a priori not
necessarily scale-free, as total statistics is
made up by the sum of all scale-free sub-
networks or clusters. So, we have to focus
later on the question, if scale-free behavior
prevails.

cluster size distribution Next, we exam-
ine the number of clusters of different sizes
(figure 5.1). Obviously, we find that high
probability of starting a new net leads to
many smaller networks, whereas low values
privilege bigger networks. Yet, we make
an interesting observation: low probabili-
ties lead to a cluster-size distribution that
is not monotonic any more, but favors big
networks.

Looking at figure 5.1 which shows the
number of points in clusters of a given size
instead of the sheer cluster count, makes
this more plausible.

• For p = 0, we will see a graph ∝
δ(555), as there is only one giant clus-
ter,
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Figure 5.1.: Frequency of clusters (left) resp. number of nodes in clusters of a given size (right) vs.
cluster size at different probabilities for a new net. Simulation was run 104 times with a
network growing up to 555 nodes. The curve for p = 0.01 is the one with the rightmost
peak; to the left follow the other p-values in descending order.

• for p = 1 a graph ∝ δ(m0 = 3), be-
cause there are only embryonic sub-
nets.

• What we observe for 0 < p < 1 is the
transition between both extremes.
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Figure 5.2.: Negative exponent of the power law
part of the curves in figure 5.1 vs.
probability p for a new net. The line
corresponds to exponent = −e2.25p.

power law region For all p, we start with
a power law region, regarding the distribu-
tion of small and medium cluster sizes. The
exponent varies with network-birth proba-
bility p. In the semi-logarithmic plot in fig-
ure 5.2 it is shown, that the exponential
relation −e2.25p describes our data rather
well. Of course, this formula cannot be
true for general p as for p → 1 we expect
m→ −∞!

Regarding empirical data from sections
3.2’s collaboration graph, we find good
overlap with the model (figure 5.3). In-
terestingly, the model is even able to ex-
plain facts formerly regarded as statistical
anomalies, as the observation of a giant
cluster of a size exceeding largely all oth-
ers in the network (section 3.2.2).

5.2.2. Merging clusters

Now, we modify the model by examining
m > 1. In this case, newly added vertices
develop several links to existing nodes (and
thus existing clusters), being able to con-
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Figure 5.3.: Semi-logarithmic plot comparing the simulation with p = 0.04 using the isolated clusters
model of figure 5.1 and statistical data from a science collaboration network (section 3.2).

nect hitherto separated networks. In this
paper, we limit our considerations on the
standard Barabási-Albert case m = m0 =
3.

Using different p, we quickly recognize
that low and medium probabilities make
the simulations nearly always end up with a
single giant cluster containing all vertices.
Points of interest are higher p in the region
of 60–90%.

cluster size distribution Again, we plot
the total number of nodes contained in clus-
ters of a given size (figure 5.4). For small
cluster sizes, we observe an non-uniform be-

havior of the graph. The explanation is as
follows: newly born clusters have a size of
m0 = 3 and thus appear very often. Also,
cluster of sizes 4 or 7 are very probable,
whereas a cluster of size 5 is very rare, be-
cause it can only be formed by a new clus-
ter to which two new ones have connected
without gluing it to a second cluster.

In a semi-logarithmic plot (figure 5.4), we
find a parabolic dependence for high cluster
sizes (i.e. a Gaussian distribution around a
mean depending on p). Appearently, the
merging clusters cannot cope with reality.
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Figure 5.5.: Frequency of nodes with a certain degree. Simulation was run 104 times with networks
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Figure 5.6.: Same plots as figure 5.5 using M = 3 (merging clusters).

5.2.3. scale-free behavior

In figure 5.5 we can see that there is no
pure scale-free behavior. There seems to
be power-law behavior for small degrees and
an exponential cutoff (figure 5.5) at higher
values. Similar results have been observed
by Newman [7] for collaboration networks.

One could argue that this effect is due
to the fact that we do not plot the degree
distribution for single clusters, but for the
whole set of them. This demur only counts

at first sight, though. At p = 80% we have
several small clusters but virtually only one
giant cluster dominating the degree distri-
bution for high degrees. So, the fact of
averaging of many different sized clusters
should manifest mainly in the area of small
degrees opposite to our observations.

Mossa et al. [44] offer a possible expla-
nation for the exponential cutoff encoun-
tered. They use a model which attributes
to each node only a restricted knowledge
on the network, i.e. the vertex is not able
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5.2. Simulation
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Figure 5.4.: Number of nodes in clusters of a
given size vs. cluster size at different
probabilities for a new net. Simula-
tion was run 105 times with a net-
work growing up to 555 nodes.

to consider the whole graph’s structure, but
only a subset according to its limited view.

M p ln(N0) k σ.
1 1% 16.8 2.27 60.
1 40% 17.1 2.45 9.2
3 60% 18.1 3.1 5.1
3 80% 20.1 4.8 3.5

Table 5.1.: Coefficients for figure 5.7

35



5. Barabási-Albert network models
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6. Conclusion

Dealing with real-world networks, scien-
tists found three properties predominating:

• short average path lengths (Small
World Effect),

• scale-free behavior,

• high clustering.

Different models were developed to cope
with this challenge, each having different
advantages and disadvantages. The model
of Barabási and Albert [30] is a promis-
ing one, but lacks support for discontiguous
networks.

We constructed a network of co-
authorship with 555 authors. Only scien-
tists were chosen that cite a specific pa-
per [30]. The resulting net shows scale-free
characteristics but differs substantially from
accepted computer models’ results.

Simulating Ising models on the network
reveals strong robustness against distur-
bances (spin flip experiment/leadership ef-
fect) and shows coherence with mean field
theory : We find the critical temperature of
subnets of our graph being proportional to
the average number of edges per site, in the
limit of a high node count.

In order to overcome the mentioned dis-
advantages of the Barabási-Albert model,
we developed a modified version, allowing
formation of multiple clusters. We saw a
strong dependence of a node’s edges count
on the network structure, separating two

cases: isolated clusters and merging clus-
ters.

Only the first case leads to results fit-
ting reality. Comparison with statistics from
our collaboration net shows similar behavior
and is even able to explain facts at first re-
garded as statistical anomalies as the obser-
vation of a giant cluster of a size exceeding
largely all others in the network. Even ex-
ponential cutoff of nodes with high degrees,
as encountered empirically, is reproduced.

Re-evaluating the model with a higher
number of authors would lead to better
statistics and greater reliability.
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B. Source code

B.1. Ising model

This C++ program simulates an Ising model on a given graph. In section 4.1.1 it was
used on our collaboration network.

(left out for technical reasons; can be found in postscript version of this document)

41



B. Source code

B.2. Spin flip model

This C++ program simulates an Ising model on a given graph. In regular time intervals,
the most connected spins (hard coded) are pinned to an up position. In section 4.1.4
this was used on our collaboration network.

(left out for technical reasons; can be found in postscript version of this document)
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B.3. Modified Barabási-Albert model

B.3. Modified Barabási-Albert model

This Ruby program creates modified Barabási-Albert models with a given final size. In
section 5 this was used on our collaboration network.

#!/home/fxp/bin/ruby -w

$P = 0 . 8
$RUNS = 1 E0 . t o i

5 $M = 1

$ c l u s t e r i n i t i a l s i z e = 3

$MAXINT = 2147483647∗2+1
10

c l a s s Random
@@ibm = 1
def rnd ( max=n i l )

@@ibm ∗= 65539 # 16807 # 65539
15 @@ibm &= $MAXINT

max ? @@ibm∗max/$MAXINT : @@ibm
end

end

20 c l a s s V e r t e x
a t t r r e a d e r : c o n n e c t i o n s
a t t r a c c e s s o r : nr
@ @ t o t a l v e r t i c e s = 0
d e f i n i t i a l i z e

25 @ c o n n e c t i o n s = [ ]
@ @ t o t a l v e r t i c e s += 1
@nr = @ @ t o t a l v e r t i c e s

end
d e f i n s p e c t

30 ” I ’m node nr . #{@nr } c o n n e c t e d to #{@ c o n n e c t i o n s . c o l l e c t { | c | c . nr } .
j o i n ( ” , ” ) } . ”

end
d e f a d d l i n k ( p a r t n e r )

@ c o n n e c t i o n s <<= p a r t n e r
end

35 d e f c o n n e c t ( p a r t n e r )
a d d l i n k ( p a r t n e r )
p a r t n e r . a d d l i n k ( s e l f )

end
end

40

c l a s s BA net
d e f i n i t i a l i z e ( prob new =0)

@p new = ( prob new ∗ $MAXINT) . t o i
@nodes = [ ]

45 @ k e r t e s z = [ ]
@r = Random . new
1 0 0 . t i m e s { @r . rnd }
s t a r t n e w n e t
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B. Source code

end
50 d e f s i z e

@nodes . l e n g t h
end
d e f s t a r t n e w n e t

max = @nodes . l e n g t h
55 $ c l u s t e r i n i t i a l s i z e . t i m e s { @nodes << V e r t e x . new }

$ c l u s t e r i n i t i a l s i z e . t i m e s { | i |
o r i g = i + max
d e s t = ( ( i +1) % $ c l u s t e r i n i t i a l s i z e ) + max
@nodes [ o r i g ] . c o n n e c t ( @nodes [ d e s t ] )

60 @ k e r t e s z << o r i g << d e s t
}

end
d e f i n s p e c t

@nodes . c o l l e c t { | node | node . i n s p e c t } . j o i n (”\n ”) + ”\n#{@ k e r t e s z .
i n s p e c t }”

65 end
d e f add node

i f @r . rnd < @p new
s t a r t n e w n e t

e l s e
70 @nodes << new node = V e r t e x . new

l = @ k e r t e s z . l e n g t h
$M. t i m e s {

d e s t = @ k e r t e s z [ @r . rnd ( l −1) ]
new node . c o n n e c t ( @nodes [ d e s t ] )

75 @ k e r t e s z << @nodes . l e n g t h −1 << d e s t
}

end
end
d e f c h e c k s u b t r e e ( node , s u b t r e e )

80 r e t u r n i f ! node . nr
s u b t r e e << node . nr
node . nr = n i l
node . c o n n e c t i o n s . each { | n | c h e c k s u b t r e e ( n , s u b t r e e ) }

end
85 d e f a n a l y s i s

@nodes . each { | node |
n e x t i f ! node . nr
t r e e = [ ]
c h e c k s u b t r e e ( node , t r e e )

90 # p t r e e . s o r t
# [ 1 ] [ 2 , 3 ] [ 4 , 5 , 6 , 7 ] [ 8 . . . ] . . .
bucket = t r e e . l e n g t h
i f ! $ s t a t i s t i k [ bucket ]

$ s t a t i s t i k [ bucket ] = 1
95 e l s e

$ s t a t i s t i k [ bucket ] += 1
end

}
end

100 end
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B.3. Modified Barabási-Albert model

$ s t a t i s t i k = {}
$RUNS . t i m e s { | i |

$ s t d e r r . p r i n t ”#{ i } . . . ” i f i %100==0
105 mynet = BA net . new ( $P )

b e g i n
mynet . add node

end w h i l e mynet . s i z e < 555
# p mynet

110 mynet . a n a l y s i s
}
$ s t a t i s t i k . k e y s . s o r t . each { | l | p r i n t f ”%3 i %6.4 f \n ” , l , $ s t a t i s t i k [ l

]} # . t o f /$RUNS }
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C. Figures

The figures found in this publication were
made by myself, except the following:

• figure 1.1 was found on http://-
www.math.colostate.edu/˜betten/-
courses/M501/combi.html.

• figure 2.1 was found in [14].

• figure 2.3 was found on http://-
www.science.nd.edu/physics/-
Faculty/barabasi.html.

• figure 2.3 was found on http://-
www.phys.psu.edu/˜ralbert/.

• figure 2.2 was found in [18].

• figure 4.1 was found on http://-
www.physik.tu-dresden.de/itp/-
members/kobe/isingphbl/.
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