Networks, Search, and The Small-World Problem

Duncan Watts
Columbia University

Peter Dodds
Roby Muhamad
Mark Newman
Steven Strogatz

Outline

- I The Small World Problem

 Milgram's experiment

 Why is it surprising?
- II Small World NetworksThe modern approach
- III Small World SearchThe algorithmic problemA sociological approach

I: The Small World Problem

- ❖ In the late 1960^s, Travers and Milgram invented "small-world method" (Milgram 1967, Travers and Milgram 1969)
- For a single *target* in Boston (a stockbroker), chose 296 initial *senders*
 - ◆ 100 in Boston, 196 in Nebraska
 - ◆ Each *sender* forwards letter to friend who is "closer" to target than themselves
 - ◆ Conditions repeat for successive senders, yielding *message* chains
 - ◆ message chains either reached target (20%) or terminated

"Six Degrees of Separation"

- Milgram's surprising result:
 - ◆ Average length of the completed chains was about 6
- Led to the famous phrase (Guare 1990).

A back of the envelope "explanation"?

• Ego 1

Ego's friends100

• Their friends $100^2 = 10K$

 $100^5 = 10 \text{ billion} > Earth's Population!$

Critical Property: When number of friends small compared to population, and social ties created at random probability of Ego's friends being friends of each other is negligible

Why was Milgram's result surprising?

- *Random ties, however, are *not* realistic
- ❖In reality, social networks exhibit
 - ◆ Homophily (Merton and Lazarzfeld, 1954)
 - ◆ Triadic closure (Rapoport, 1957)
- Hence Clustering/redundancy/group structure

Interesting Small World Problem is therefore:

- *How is it possible for Social Networks to be:
 - **♦** Very highly ordered/clustered *locally* (like social groups), and
 - ◆ Still be "small" globally? (like random networks)
- *Problem is that Clustering makes Analysis Hard
 - ◆ It was theoretical difficulty that led to Milgram's experimental approach in the first place

II: Small World Networks

- ❖ After Milgram, not much done for 30 years
 - ◆ Experiments are hard to perform
 - ◆ Large-scale network data are hard to collect
- Arrival of modern computers enabled new theory
 - ◆ What are the conditions under which *any* network can be clustered and still "small"?
 - ◆ Interpolation between ordered and random networks (Watts and Strogatz 1998)

Rewiring networks from Order to Randomness

Increasing randomness

At the Extremes:

$$p=1$$
 (Random)

$$L \propto \frac{n}{k}$$
 *"Large"

$$L \propto \frac{n}{k}$$
 * "Large" $L \propto \frac{\ln n}{\ln k}$ * "Small"

$$C \approx \frac{3}{4}$$
 *"H

$$C \approx \frac{3}{4}$$
 * "High" $C \approx \frac{k}{n} \to 0$ * "Low"

Intuition: the world can be *either* "large and highly clustered", or "small and poorly clustered", but *not* "small and highly clustered"

Path Length and Clustering vs. Random Rewiring

Origin of Small-World Networks

- $\bigstar L$ is governed by <u>Number</u> (pN) of random shortcuts
 - ◆ Surprising fact: roughly 5 shortcuts reduce average path length by factor of 1/2, *regardless* of *N*

But

C is governed by **Fraction** (**p**) of random shortcuts.

Origin of Small-World Networks

❖Main result:

• For large N, a small <u>fraction</u> (p) of shortcuts will contract L, but leave C unchanged.

Conclusions:

- ◆ Small-World Networks are generic
- ◆ Should be widespread
- ◆ Not confined to social networks

Examples of Small-World Networks

	L _{Actual}	L _{Random}	C _{Actual}	C _{Random}
Movie Actors	3.65	2.99	0.79	0.00027
Power Grid	18.7	12.4	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

Examples of Small-World Networks

- Movie actors
- ❖ Power grid of Western United States
- Neural network of C. elegans
- ❖ World Wide Web
- Ownership network of German firms
- * Metabolic network of E. coli
- Collaboration networks of scientists
- ❖ Boards of directors of Fortune 1000 Companies

III: Small-World Search

- Travers and Milgram showed not only that
 - ◆ short paths exist between randomly-selected pairs but
 - ◆ individuals could actually *find* these paths using only:
 - Local information about the network
 - Simple heuristic strategies
- ❖ Jon Kleinberg (1999, 2001) identified this "Algorithmic Small-World Problem"

Sociology Important!

- 1. Individuals *i,j* belong to groups *I,J*
- 2. Group membership equivalent to *social identity*
- 3. Individuals *partition* the world hierarchically
- 4. Distance between groups measured on hierarchy

Social Identity:

- Hierarchy is a cognitive device that defines similarity and difference between individuals.
- ❖But it isn't actually the network.
- Network is generated as function of social distance x: $p_{ij} = c \exp(-\alpha x_{ij})$
- *α is homophily parameter

Multiple Dimensions

- Crucial feature: individuals cluster the world in <u>multiple</u> ways
- Leads to the notion of *Social Identity*

Social Distance

- Social distance is **minimum** distance across all dimensions
- ❖ Minimal "metric" violates "triangle inequality"
- ❖ Individuals have 2 levels of information
 - ◆Social "distance" (Global)
 - ◆Local knowledge of network
- \bullet Neither of these on its own is adequate
 - ◆Social "distance" not a true distance
 - ◆Network "distance" only locally known

$$d(A,B) \le d(A,C) + d(B,C)$$

❖ But *together*, they resolve the search problem via a simple greedy algorithm

Local Search Algorithm

- *Each node has the following information
 - ◆ Coordinates ("Identity") of target (t)
 - ◆ Coordinates of self
 - ◆ Coordinates of immediate neighbors
- Node i passes message to its neighbor j, that has the smallest social "distance" y(j,t).
- ❖In effect, the same algorithm used by Milgram's subjects

What is "Small"?

1. Assume: Message failure probability = 25%

2. Require: 5% of chains complete

 \longrightarrow small \leq 11 steps

Parameter regions in which networks are searchable

Main Result:
Searchable Networks
are Generic

Some Consequences

- ❖In a world of one social dimension "Kleinberg condition" is required for searchability
 But,
- in a world of multiple social dimensions homophilous networks work better
- in a homophilous world, multiple social dimensions are essential for searchability

Some Consequences

 $\infty = 0$ corresponds to Kleinberg condition

 $\infty = 2$ corresponds to homophilous network

The Model – Results

Milgram's Nebraska-Boston data

Key Notion

- *Social identity governs both
 - ◆ The creation of the network
 - ◆ Successful search strategies on the network
- Identity makes search possible
 - ◆ Network structure is not enough

The New Small-World Experiment

("bigger, faster, and less expensive")

- Columbia Small-World Research Project
- Very similar to Milgram's Experiment, but web-based
 - ◆ smallworld.sociology.columbia.edu
- ❖ Initial results (Dodds, Muhamad, and Watts, 2002)
 - **♦** 60,000 senders
 - ♦ 19 targets
 - ♦ 171 countries
- ❖ 380 chains complete (worse attrition than Milgram)
- Median chain length ranges from 5 (same country) to 7 (different country)

Who Cares Anyway?

- Small world problem is a particularly clean example of social search (locate remote target using local ties)
- Social search critical aspect of *problem solving* when
 - ◆ Environment is uncertain/ambiguous
 - ◆ Central database/directory is absent
- *Technological example: *peer-to-peer networks*
- ❖ But human organizations already have efficient peer-topeer networks.
- ❖ By extracting essence of social search, may be able to design better protocols and "smarter" networks.

Six Degrees: The Science of A Connected Age (W. W. Norton, 2003)

Home Page

http://www.sociology.columbia.edu/people/index.html

Small World Project

http://smallworld.sociology.columbia.edu

First, Kleinberg proved that when random edges are added with uniform probability (with respect to lattice distance), individuals cannot find short paths.

Reason: uniform edges are not correlated with underlying "social distance"; hence, having used one shortcut to get closer to target, additional shortcuts are equally likely to move message far away.

Kleinberg's Model

What happens for intermediate values of γ ?

Kleinberg's Model

- General Idea
 - ◆ Distribution of random contacts encodes information about underlying "social structure"

At critical point
Short paths exist
And findable

A: short paths exist but can't be found

B: paths easy to find but not short

How Does It Work?

- Partition world into "phases"
- Picture as concentric rings with exponential radius: $R_i = 2^i$
 - When γ is at critical value, network provides an equal *number* of random contacts at every scale
- "Kleinberg Condition" guarantees each phase requires only few steps
- Exponential radius ensures only few phases

Another Attempt to Explain the "six degrees" phenomenon:

"Searchable Small-World Networks"

* "Scale-free degree distribution" implies the existence of a small fraction of highly connected "hub nodes"

A simple search algorithm

— direct message to your

most connected neighbor —

quickly finds hubs and jumps
around randomly until target
is found.

Some Problems –

- ❖ There is no evidence that social networks are built on *geometric lattices*
- \bullet There is no organizing mechanism to drive the parameter to the sweet spot i.e., searchability is not generic
- No evidence that *real* social networks are *scale-free* (at the very least, they have cutoffs)

Evidence on search algorithms shows that social characteristics like geography, occupation are important (not just degree)

The Model – Results

❖Mean Chain Length

Early History

- ❖ Anecdotal observation since at least 1920's (Karinthy)
- ❖ Academic Study commenced in 1950's
- ❖ Pool (political scientist) and Kochen (mathematician) became interested in mobilization of political power (Eventually published in *Social Networks I*, 1978)
- Their theoretical work attracted interest of the social psychologist, Stanley Milgram

Relevance of Small World Problem

- *Role of social information in financial markets
- Efficient matching in labor markets
- Diffusion of ideas or innovations
- ❖ Robust architectures for organizations or redistribution networks (airlines, Internet)
- Efficiently searchable distributed databases