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Abstract.

This paper investigates the effects of geometrical factors characterizing the

shape of a river basin on the features of its hydrologic response. In particular, we wonder
if by measuring the hydrologic response (i.e., gauging) the salient geomorphic features of
the basin can be recovered. We argue that the basic structure of the channel network
tends, in ideal conditions, to yield some universal characters of the width function W(x)
defining the relative proportion of a contributing area at a distance x from the outlet.
W(x) exhibits low-frequency features, which are geometry-dominated, and high-frequency
features determined by recurrent aggregation patterns. It is suggested that given the shape
of the basin one can indeed forecast in a rational manner the main characters of the
hydrologic response which are imprinted in reproducible width functions. However, the
inverse problem (i.e., the determination of the shape from the measure of the hydrologic
response) is less solidly defined because of the possible loss of irretrievable information
induced by the dynamics of runoff processes. Therefore the question posed in the title
cannot be solved in general, although many clements for a general theory are seemingly

established.

Introduction

In a beautiful paper entitled “Can one hear the shape of a
drum?,” Kac [1966] wondered if someone with perfect pitch
can determine the precise shape of a drum just by listening to
its fundamental tone and all the overtones. This question iden-
tifies an inverse spectral problem and motivates numerous
works on the subject. The question, far from trivial, is linked to
the asymptotics of the infinite sequence of eigenvalues arising
in the drum vibration context and to whether from such a
sequence one can indeed bear complete inference of the geo-
metric boundary conditions. Borrowing from Kac’s title, revis-
ited later in the context of fractal domains for the boundary
value problem [Lapidus, 1989], this paper investigates the
bearing of geometrical factors characterizing the shape of a
river basin on the features of its hydrologic response. In par-
ticular, we wonder if by measuring the hydrologic response
(i-e., gauging) the salient geomorphic features of the basin can
be recovered in some manner. Conversely, we wonder if given
the shape of the basin one can indeed forecast in a rational
manner the main characters of the hydrologic response.

These questions, besides being far from trivial, bear impor-
tant practical consequences to hydrology. In fact, flood predic-
tion in ungauged basins still stands as a crucial engineering
problem for disaster prevention. Since the shape of the basin
can be obtained objectively, say from space, the link of shape
and response is relevant to the problem since the knowledge of
some geomorphic shape factors and spatial scales coupled with
climatic observations could surrogate costly, and at times com-
plex, measures.

The observation of recurrent fractal characters embedded in
a variety of forms in river basin geomorphology is of relatively
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recent attention [e.g., Mandelbrot, 1983; Tarboton et al., 1988;
La Barbera and Rosso, 1989; Rodriguez-Iturbe et al., 1992a, c,
1994; Rinaldo et al., 1992, 1993; ljjasz-Vasquez et al., 1993,
1994]. The inference of the fractal characters of the basins on
the hydrologic response (the so-called geomorphological dis-
persion) has been investigated by Rinaldo et al. [1991] and
more recently by Snell and Sivapalan [1994]. Rinaldo et al.
[1991] showed the travel time distribution to the outlet of the
basin in response to a uniform instantaneous injection was
solved analytically in the case of Wiener dynamics, that is,
characterized by biased convection in the direction of the net-
work to which a hydrodynamic dispersion process is superim-
posed. Interestingly, from a general expression of a moment-
generating function, Rinaldo et al. [1991] inferred that the
variance of travel times to the outlet is made up by two inde-
pendent contributions: one related to the scatter of arrivals
induced by hydrodynamic dispersion and the other, by far
predominant in real cases, related to the geometrical hetero-
geneities, that is, to the variability of the connected paths to the
outlet from a random starting site. It was concluded that the
bulk of the response is geometry-dominated because geomor-
phological dispersion tends to prevail over hydrodynamic dis-
persion. Interestingly though, they found that dispersion mech-
anisms tend to destroy fractal characters in the structure of the
hydrologic response.

From the perspective of science the link between fractal
forms and the dynamics behind their growth is gaining
strength, especially after the discovery of self-organized criti-
cality [Bak et al., 1987, 1988] (for a specific reference to geo-
morphology, see also Bak and Paczuski [1993]). In that milieu,
river networks have played an important role both for the
availability of reliable data from the real world covering several
orders of magnitude in their spatial scales and for the recog-
nition of the signatures of self-organization in their fractal
structure [Rinaldo et al., 1993; Rigon et al., 1994; Rodriguez-
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Tturbe et al., 1994; A. Rinaldo et al., Climatic signatures on
geomorphology, unpublished manuscript, 1994 (hereinafter re-
ferred to as Rinaldo et al., unpublished manuscript, 1994)].

The geometrical and topological connections of the hydro-
logic response were first suggested by Kirkby [1976}, although a
complete formalization in the framework of the theories of
transport by travel time distributions came only after the the-
ory of the geomorphologic unit hydrograph (GIUH) [Ro-
driguez-Iturbe and Valdes, 1979]. The so-called width function
formulation of the GIUH by Gupta et al. [1986] (see also Gupta
and Mesa [1988]) later extended the geomorphic insight of the
theory. The basic result for the response in time of a basin
(identified by the travel time distribution f(#)) to an instanta-
neous unit impulse of effective rainfall uniformly distributed in
space is as follows:

f@) = [uWuo)l/l ey

where ¢ is time, in suitable units; u is a velocity, constant for all
particles, defining a dynamic scale for the process (here a
sample water particle undergoes a constant drift u along the
local direction of the links of the network); [ is a geometrical
scale, here the maximum length from source to outlet; and
W(x) is the (dimensionless) width function of the basin, that is,
the relative proportion of basin area at a distance x from the
outlet. Notice that the length x is measured along the network
(i-e., the chemical distance) and that W(x) is actually an area
distribution function. Since no distinction is drawn at this stage
between hillslopes and channels, the two functions coincide.
Interestingly, one would expect that the observation of recur-
rent multifractal characters for W(x) [Marani et al., 1991;
Rinaldo et al., 1992, 1993; Rodriguez-Iturbe et al., 1992b] would
be transfered through (1) directly into the hydrologic response.
It is now clear [Rinaldo et al., 1993; Marani et al., 1994] that the
width functions W(x) of real basins reflect both common re-
current characters (independent of climate, geology, vegeta-
tion, and the shape of the basin’s boundaries) and some fea-
tures peculiar to the shape of the basin. For instance, the
power spectrum of the width function clearly shows that low-
frequency modes are determined by the outer shape of the
basin, whereas high-frequency modes tend to a power law with
universal slope. Although the power spectrum hinders multi-
scaling characters which may be revealed by other analyses
[e.g., Feder, 1988], this general result is confirmed through
different degrees of sophistication [Rodriguez-Iturbe et al.,
1994; Marani et al., 1994].

The result in (1) was generalized by Marani et al. [1991] as
follows:

@) = [u(W )/ (2)

where (W(uf)y = [, W(x) dP(x, t) where P is the solution to
Kolmogorov’s backward equation: dP(x, t) = dx/(4wDt>)"/?
exp [—(x — ut)?/4Dt]. The above model postulates that, in
addition to a constant drift u#, the dynamics of any water
particle are affected by a one-dimensional Brownian motion
Xp(¢) biased in the direction of the network ({(Xz) = 0 and
(X2) = 2Dt). Similar results were derived in different con-
texts [Troutman and Karlinger, 1985]. The result in (2) yields
important contents of information. In the general case one can
derive analytically the moments of the distribution f(¢) and in
particular the mean and variance of the arrival time distribu-
tion [Rinaldo et al., 1991]:
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We note that the above equations hold even in the case where
velocity depends on the position, u(x), with obvious simplifi-
cation in the case of constant drift #. We also note that the
morphological contribution to the variance of the hydrologic
response (the second and third terms in (4)) is null only in very
particular cases.

The following was inferred from (2):

1. Fractality of basin shapes (i.e., without a ruler one can-
not distinguish networks extracted from very large or smalil
basins) cannot be transferred to the dynamic response f(¢). In
fact, as a basin Peclet number Pe = ul/D decreases (i.e., when
mean travel distance is large with respect to mean dispersion
displacements), the multiscaling self-affinity observed for real
width functions [Riraldo et al., 1992, 1993; Marani et al., 1994]
is progressively destroyed. Thus one can distinguish from the
hydrologic response whether the basin is large or not simply
from the regularity of the gauged record (the larger the basin
the smoother the gauge trace). Therefore the mechanisms and
the timescale imposed by dispersion break the one-to-one re-
lationship of width functions and unit hydrologic responses.

2. While it is observed experimentally that the width func-
tion is not always skewed to the left with positive third mo-
ments of the distribution, being in some cases (e.g., Peano’s
basin) indeed the opposite, the hydrologic response is invari-
ably skewed to the left, showing a relatively fast rising limb and
a long tail. It was argued that the latter is described analytically
by (2) because dispersion has a selective and pronounced skew-
ing effect.

However, the above analyses were missing some important
parts of the picture related chiefly to hillslope patterns and
heterogeneity which are studied here. In this paper we will
focus on direct runoff, therefore bypassing the estimation of
effective rainfall. Although this can be dealt within the frame-
work of the geomorphologic hydrologic response, we prefer to
avoid clouding the central idea of this paper with a different
kind of problem. Also, we neglect spatial nonuniformities of
rainfall input which could be accounted for by the geomorpho-
logical approach. In other words, we are not interested in the
size of the basin and of the input, as much as Kac [1966] was
not interested in what was forcing the drum to vibrate. The role
of the sound in the work by Kac will be taken by the geomor-
phologic unit hydrograph here.

On the Interplay of Width and Boundaries

In this section we show that the information contained in the
width function allows for decoding the main features of bound-
ary profiles of river basins.

We have mentioned in the introduction that the geomorphic
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Figure 1. (a) The sequence of possible pixels (i.e., at a given
distance x from the seed) is chosen among the neighbors of the
previously occupied sites. This is done through adjacent layers
preventing the formation of pits or holes in the drainage struc-
ture; (b) one example of an unphysical configuration obtained
by the procedure and then discarded (the structure resulting
from a sequence of additions merges leaving a hole surround-
ing the outlet). In the scheme adopted, the choice of pixels not
belonging to an arbitrary region seeded in the outlet is con-
strained to avoid unphysical configurations. In practice, one
rejects a realization in which the random choice selects addi-
tions whose coordinates belong to an unfeasible predefined
region. However, this is not strictly necessary once ensemble
averaging over a large number of realizations is employed; (c)
unphysical choices of drainage directions are also avoided
[Groff, 1992].

width function W(x) has recurrent characters reflecting com-
mon mechanisms of organization of the drainage structure
regardless of climate, geology, vegetation, etc. These recurrent
characters pertain to the high frequencies of other spectra. The
low frequencies are much more variable from basin to basin as
they reflect the bulk of the contributing area that is available to
drainage. Therefore the low frequencies are grossly the width
of the basin from ridge to ridge measured along a direction
orthogonal to a diameter. Needless to say, at a higher scale this
availability of drainage area, as well as the overall fractal shape
of the boundaries, is regulated by the competition for drainage
and the migration of divides produced by landscape self-
organization. Within this context we assume that the bound-
aries are assigned and time-invariant.

Although the inverse nature of the problem was speculated
to yield nonunique solutions, we have investigated under what
circumstances the identification results are meaningful. One
such example may be obtained by a simple exercise in which
one constructs a network by successive random additions from
a seed which respect the total number of occupied sites among
all available nearest neighbors. The random additions have to
be exactly equal to the width function which is given a priori.
Although there is no unique tree respecting this rule, the main
characters are reproduced as follows:

1. A square lattice equal to the digital elevation model
(DEM) lattice size that allowed the extraction of the given
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width function is assumed. The arbitrary coordinates of the
outlet are assigned, say (0, 0).

2. All possible neighbors to the outlet site, that is, at a
distance x = Ax (where Ax is the grid size), are isolated in the
plan. We have constrained the possible choices based on phys-
ical requirements as discussed below.

3. The sequence of possible pixels (i.e., at a given distance
x from the seed) that might be chosen at the next level from a
given structure is defined. This is done through adjacent layers
(Figure 1a) which prevent the formation of pits or holes in the
drainage structure. From that sequence we eliminate all sites
already occupied by the growth. We also eliminate pixels not
belonging to an arbitrary half-space through the seed to avoid
unphysical configurations (Figure 1b). Notice that particular
choices of drainage directions (Figure 1c) are avoided because
they are unphysical.

4. Among all possible M choices of neighbors, a subset is
chosen to allow for the correct proportion W(x) of pixels
among the neighbors. The choice of neighboring elements
identifies the drainage directions joining the pixels. Among the
M possible choices of pixels equally distant x from the outlet,
the choice is made by drawing W(x)N pixels randomly from a
uniform distribution, labeling all pixels that may be chosen and
avoiding discarded sites. If the available pixels are less than
those required by W(x), the configuration is discarded. Notice
that through the above procedure it is highly unlikely that
regular shapes will be obtained (e.g., mirror-image basins).

5. Wesetx = x + Ax and reset the procedure untilx = /.

The development of the structure of the basin follows the
availability of area ruled by W(x). Thus the final choice is the
final step of a sequence of compatibility controls on the result-
ing structure. Through the above procedure any realization of
the random process is characterized by the prescribed width
function W(x). We have also tested other strategies without
significant changes.

Figure 2 shows the boundaries and the width function of the
Nelk river basin, extracted by a 62.6 m* X 922 m* DEM
[Tarboton et al., 1988; Ijjasz-Vasquez et al., 1993). Figures 3a
and 3b show two realizations of the boundaries of the structure
resulting from the above procedure once the width function of
Nelk is imposed. Figure 3c shows the reconstructed shape as

W(z)

100

Figure 2. (a) The boundaries and (b) the width function
W(x) (in pixel units) of the Nelk river basin (440 km?, ex-
tracted by a 62.6 m? X 92.2 m? digital elevation model (DEM)
[Tarboton et al., 1988; Ijjasz-Vasquez et al., 1993]).
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(a) (b) (c)

Figure 3. (a, b) Two realizations of the boundaries of the structure resulting from the procedure described
here. The width function of the Nelk river basin is imposed and is exactly reproduced in all realizations; (c)
the reconstructed shape as the ensemble average of 10 realizations of the shapes devised according to the
approach described here.

the ensemble average of 10 realizations of the shapes devised ~ the ensemble-averaged components of the Fourier spectrum of
according to the previous elementary approach. The ensemble  the polar plot.

average is obtained by (1) unrolling the boundary profiles via a The robustness of the resulting configurations of the basin
polar plot and expressing the resulting function as a Fourier ~boundaries is surprising. In fact, in almost all representations
serics [Russ, 1994]; and (2) reconstructing the boundaries from  the overall shape of Nelk is reproduced (Figure 3). An objec-
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Figure 4. The width function of the Schoharie river basin (2408 km® [Tarboton et al., 1988]) and the width
function formulation (2) of the hydrologic response (in all cases,u = 1 and! = 1): (a) D = 107% m%/s; (b)
D = 10"2m%s; (c) D = 10~ * m?%s; (d) D = 1 m?s.
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Figure 5. (a) Drainage directions for the DEM of the Fella river basin; (b) channel network identified by
connecting all concave sites for the Fella river basin in Figure 5a; (c) Fella river network. The channelized site
i has V22, = 0 and Vz;(A4,)*'? = 100; (d) Fella river network. The channelized site i has V?z, = 0 and

Vz,(A,)Y? = 400.

tive boundary representation of the different results (i.e., a
comparison of the amplitudes in the Fourier spectra of the
polar plots of the boundaries [Russ, 1994]) substantiates the
visual impression. This will be reported elsewhere (Rodriguez-
Iturbe et al., manuscript in preparation, 1995).

We have also tried to simulate the same shape by using a
filtered version of W(x) where only low frequencies had been
retained. The same robustness is shown by the shape of the
basin. Here our interest is not in refined representations of the
features of the boundaries (e.g., they could be modeled by two
colliding self-affine trails issuing from the outlet [jjasz-Vasquez
et al., 1994]) in any realization, nor in evaluating ensemble-
averaging properties, and thus we stop with the conclusion that
the information contained in the low frequencies of the width
function suffices in reconstructing the shape of the basin.

The possibility to suitably reproduce the width function from
the knowledge of the outer shape of the basin had been noticed
carlier [Rigon et al., 1993] using optimal channel networks
(OCNs) concepts [Rodriguez-Iturbe et al., 1992a, b]. It had been
established that OCNs developed with given basin boundaries
have similar width functions among themselves and among
those observed in real basins with the same shape. Since the
link of width functions to the hydrologic response had also
been established [Kirkby, 1976; Gupta et al., 1986; Gupta and
Mesa, 1988; Rinaldo et al., 1991], the above result suggests that
by gauging the flow at the control section of a watershed one
could pursue the inverse pattern, from the flow to the width
function and from the widths to the boundaries to effectively
gauge the shape of a basin. This is the subject of the next
section of this paper.
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Figure 6. The hydrologic response obtained by sampling the
travel times to the outlet for all sites / in the Fella river DEM
of Figure 7: (a) the width function W{(x) (the particular case
where u, = u, = u = 1 and!/ = 1 when f(¢t) = W(ut)); (b)
the response f(¢) for the deterministic case where u,/u, = 0.1
and u, = 1, the latter in pixel units; (c) the results of a Monte
Carlo (MC) procedure where the drift u,, is randomized by
assuming a lognormal distribution with mean 0.1 and variance
0.1. The curve is obtained as the ensemble average of five
realizations.

Geomorphologic Hydrologic Response

Figure 4a shows the width functions of the Schoharie river
basin (1412 km?) whose DEM features are discussed by Tar-
boton et al. [1988]. In there as many as 100,000 pixels define the
relative distribution of drainage area along the maximum path
from source to outlet. Figures 4b—4d show the effects of intro-
ducing a hydrodynamic dispersion of the type contained in (2)
superposed to a unit drift # applied to the width functions of
the Schoharie river basin. The distribution of the arrivals tends
toward a skewed form typical of a sigmoid hydrologic response.
The appearance of a skewness in Figure 4 not contained in the
original width function (Figure 4a) and the smoothing effect of
the dispersion suggest [Marani et al., 1991; Rinaldo et al., 1991]
that the pronounced skewness of real-life hydrographs could be
based solely on dynamical arguments. It was also suggested that
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(2) explains why basins of different sizes tend to exhibit scale
invariance in their geometrical features unlike their responses. In
fact, the larger the basin, the smoother the response hydrographs
tend to be. This follows from the embedded timescale and spatial
scale imposed by dispersion processes.

The above suggestions were incomplete because the processes
involved neglecting the role of hillslope patterns and heterogene-
ities. It turns out that these are of foremost importance.

To describe the former, one needs to objectively distinguish
hillslopes, valleys, and channels. Hillslopes are seen as areas of
topographic divergence, and valleys are areas of topographic
convergence. Channels appear within areas of topographic
convergence but are not defined by curvature alone. In fact, it
is difficult to define a channel from DEMs, a morphologic
feature defined by a concentration of transport of water and
sediment within a defined geometry where, for instance, banks
are meaningful concepts. However, one feature that can be
objectively measured from accurate DEM data is the conver-
gence (or divergence) of topography at any point of that land-
scape. In fact (let z(x) = z(x, y) be the field of landscape
elevations), one can measure regions of convergent topogra-
phy by the condition that

Vi(x, 1) =0 %)

(where V2 is the Laplace operator (V> = 8/9x> + 3/3y?))
and vice versa (V?z < 0) for areas of divergent topography.
Examples of spatial patterns of convergent, divergent, and
planar topographic elements compared to modeling of DEMs
have been discussed by Dietrich et al. [1993], while Howard
[1994] used critical values of the gradient divergence to dis-
criminate channel initiation. The classification is based on the
sign of V?z for discriminating between convergent or divergent
elements. Elements are considered planar when |V?z| < e
with € as a suitable cutoff. The accurate evaluation of the
Laplacian is an interesting numerical problem. However, in
assessing the convergent or divergent nature of the topogra-
phy, one is interested in the sign of V2z, and thus the accurate
evaluation of its absolute value is of lesser importance.

Divergent topographies require specific techniques since
multiple flow directions ought to be assigned to pixels placed in
a divergent landscape [Costa-Cabral and Burges, 1994; Mont-
gomery and Foufoula-Georgiou, 1993] where the cumulated
flow at a point (surrogated by the upslope area) should be
distributed among more than one downslope neighbor. How-
ever, in the context of this paper we do not need to further
discuss this point.

Thresholds for channelization also play an important role
[Montgomery and Dietrich, 1988, 1992; Dietrich et al., 1992,
1993]. They can be thought of as the by-product of subsurface
saturation, slope instability through shallow landsliding, and/or
erosion by overland flow. In the case of erosion by overland
flow the threshold is clearly related to the exceedance of a
critical shear stress. The actual shear stress at the ith site, say
T;, is proportional to the support area and the local slope at i,
say 7, « (A;)"?|Vz,|. Thus the exceedance of a critical stress
(7; > 1.) at the area necessary to support a channel head
generated by the above mechanism (A4; = 4,) can be cast in the
form A, = C/|Vz]?, where C = f{r,, p), p being some meaningful
net rainfall intensity. Thus smaller drainage areas are needed to
initiate channels on steeper slopes. Slope-dependent area thresh-
olds A, define quite well the real extent and structure of the
channel networks from topographic data, and, according to Di-
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Figure 7. The effects of hydrodynamic dispersion on the responses of Figure 6. Here the dispersive process
is modeled by (2) [Rinaldo et al., 1991]. The dispersion coefficients have been set equal to (a) D = 0; (b)
D = 0.05; (c¢) D = 0.1; and (d) D = 0.2 in pixel units (L?/T). Notice that no MC average has been

implemented.

etrich et al. [1993], the channelized network changes little even for
relatively large changes in the value of ...

Figure 5a shows a representation of the Fella river basin
(northern Italy, 1420 km?) whose DEM features are described
by Rodriguez-Iturbe et al. [1994]. The map is obtained by asso-
ciating a drainage direction of steepest descent with every pixel
regardless of its channelization. We have extracted the channel
network by defining the arbitrary channelized site i through the
simultaneous occurrence of (1) convergent topography, that is,
V2z, = 0; and (2) the exceedance of the critical threshold, that
is, Vz,(A,)"? = 7, (where z, is the elevation at the ith site and
A, its cumulated area computed through the drainage direc-
tions). Figure 5b shows the network obtained connecting all
concave sites. The related valley density (the relative propor-
tion of concave pixels whose characterization is meaningful
(Rinaldo et al., unpublished manuscript, 1994) is 0.62. Figures
5S¢ and 5d show the results of the application of the threshold
criterion to the Fella river basin with 7, = 100 and 400 in pixel
units. Notice that drainage directions in unchanneled sites are
represented by dotted lines. Notice also that notwithstanding
the rather large range of values of 7., the channelized network
undergoes minor changes.

With the above characterization one can objectively com-
pute, for any path originated at site i, a measure of the hill-
slope paths L, (i) required to reach the first channel site, sayj,
and the related length of channel path L (j;) from j; to the
outlet, in both cases by following local drainage directions
defined by Vz.

Following the idea of Van der Tak and Bras [1990], we have
rescaled the width function by suitably distinguishing the mean
drift depending on whether the moving particle is in hillslopes
or channels. Let 1, denote the mean drift in hillslopes and u,
the analogous for channels. Mean travel time T, for the par-
ticle issuing at site i is therefore

T; = {[Ly(@) Jun} + AL uch (6)
and the distribution f(¢) follows from sampling all sites { within
a DEM. Notice that in this case the features of the distribution
are completely imprinted in the morphology of the flow paths.
Figures 6a to 6¢ show the result of the above rescaling
applied to the Fella river basin shown in Figure 5d. Figure 6a
shows the width function W{(x) (obviously the particular case
of response f(¢) = W(ut), whereu, = u, =1 = 1. Herel =
1 for convenience), which is not particularly skewed. Figure 6b
shows (for the case where the threshold is as in Figure 5c) the
response function computed by an arbitrary ratio u,/u,. = 0.1
andu, = 1, the latter in pixel units. Figure 6¢ shows the results
when a Monte Carlo (MC) procedure has been applied to the
process to mimic the effects of heterogeneities. In Figure 6¢ the
drift u,, has been randomized by assuming a lognormal distri-
bution with mean 0.1 and variance 0.1, and five realizations
have been ensemble averaged. '
From the results in Figure 6 it is clearly suggested that the
different dynamic characterizations for hillslopes and channels,
even in the gross deterministic framework of Figure 6b, dras-
tically enhance the positive skewness of the response. The
unphysical degree of roughness of the response of Figure 6b is
significantly reduced by simulating heterogeneity through
Monte Carlo techniques. It is not uncommon to find width
functions with negative skewness appearance which the above
mixed dynamics translate into a smooth response with a posi-
tive skewness. '
Figures 7a-7d show the additiofi of hydrodynamic dispersion
of the type described by (2) to the response in Figure 6b, where
the related dispersion coefficients have been arbitrarily set to
D =0, 0.05, 0.1, and 0.2 in pixel units (L?/T). Notice that
no Monte Carlo average has been ‘implemented.
The effects of progressive MC averaging are tested in
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Figure 8. The effects of progressive MC averaging on (f(¢)).
Here u /u, = 8, u, = 1, and the variance of the (mean l)
lognormal distribution for u,, is 0.5: (a) 10 MC realizations; (b)
50 MC realizations; (c) 100 MC realizations.

Figure 8, where u_ /u, = 8, u, = 1, and the variance of the
(mean %) lognormal distribution for u,, is 0.5. A smoothing of
the response is progressively achieved, while the main features
remain unchanged, as they are most sensitive to the ratio u /u,,.
Figure 9 shows the dramatic changes that mean, variance, and the
dimensionless third moment of the response undergo as a func-
tion of the ratio u_/u, in the deterministic case.

Many other cases have been tested for river basins in north-
ern Italy and comparisons with real runoff data have been
performed. Since the results are not central to the issue at
hand, we will report them elsewhere (Rodriguez-Iturbe et al.,
manuscript in preparation, 1995) aiming at rainfall-runoff anal-
yses in the above framework. What matters here is that differ-
ent dynamics can mix considerably the geometric and topologic
information contained in the width functions. Since the dy-
namic characters can vary considerably in time and space (e.g.,
depending on initial moisture conditions, vegetation state,
rainfall intensity, and spatial distribution), the fact that they
have considerable impact on the response seems to limit con-
siderably the capabilities of the inverse procedure, that is, from
gauging to morphology.

RINALDO ET AL.: CAN ONE GAUGE THE SHAPE OF A BASIN?

Conclusions

The morphologies of river basins contain important infor-
mation on the features of their hydrologic response. High-
frequency modes of geomorphologic width functions have re-
cursive characters notwithstanding the variety of geologic,
climatic, vegetational, and geomorphic features in real river
basins. These recursive characters reflect the common pattern
of self-organization that river networks experience. These
high-frequency modes do not bear fundamental implications in
the determination of the hydrologic response, that is, being
smoothed and tending to lose the original fractal characters via
the filtering effect of the dynamics. The recurrence of such
characters, well reproduced by optimal channel networks
(OCNs), allows for the reconstruction of width functions from
the outer shape of the basin. We have also shown in this paper
that the shape of the basin can be effectively recovered from
the width function of the embedded network.

On the contrary, the hydrologic response is imprinted in the
low Fourier modes of the width function. These reflect the
gross availability of contributing areas at isochrone distances
from the outlet and are also accurately reproduced by OCN:s.
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Figure 9. Evolution of mean E[TY], variance Var[T], and the
dimensionless third moment of the travel times as a function of
the dynamic ratio u/u, for the Fella river basin.
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However, isochrone distances are greatly affected by different
dynamic specifications reflecting heterogeneity, hydrodynamic
dispersion, and the distinction between hillslope and channel
flow paths. These dynamic specifications make it impossible to
recover the outer shape of the basin from the hydrologic re-
sponse. Also, since a deterministic, constant drift is a rather
crude representation of the dynamics in both river channels
and hillslopes, it is believed that stochastic averaging explains
the physical mechanism responsible for the smoothing which is
typical of usual gauged records. The universal positive skew-
ness of the response is suggested to be a by-product of differ-
ences in the mean drift in hillslopes and channels and of hy-
drodynamic dispersion.

It is concluded that the hydrologic response is imprinted in
the shape of the basin. From known morphological features
one can accurately predict the width function of the basin and
through it devise many properties of the response by hypoth-
esizing reasonable dynamic scenarios. However, the inverse
procedure is less reliable, although we have shown that from a
given width function one can obtain a robust estimation of the
shape of the basin. The weak link is from gauged records to the
width functions which are most affected by dynamic specifica-
tions irretrievable from the sole gauge trace.
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