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Abstract 

Using a simulation approach based on the Metropolis algorithm, we contrast

broad global features of network structure – in particular, small world properties – with

the local patterning that could generate the network. It is not difficult to infer local

structures emerging from certain simple social processes but, as these localized patterns

agglomerate, the global outcomes are often not apparent.  In such cases, computational

techniques are necessary because analytic solutions are simply not available. In this

paper, we show how to simulate a distribution of Markov random graphs based on

assumptions about simple local social processes. We examine the resulting global

structures by comparison with an appropriate Bernoulli distribution of graphs and

provide examples of various stochastic global “worlds” that may result, including small

worlds, long path worlds and dense non-clustered worlds with many four-cycles. In the

light of these results we suggest a locally-specified social process that may result in

small-world global properties. In examining the movement from structure to

randomness, we show how parameter scaling relates to a phase transition occurring at a

certain scaling (“temperature”) so that a non-stochastic structure “melts” into a

stochastic counterpart. We provide examples of “frozen” deterministic structures,

including highly clustered “caveman” graphs, bipartite structures, and global cyclic

structures involving structurally equivalent groups.
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1. INTRODUCTION

It matters that networks differ. To justify this claim, we need look no further

than the compelling description of the rise of the Medici by Padgett and Ansell (1993).

They argue that Cosimo de Medici came to power in fifteenth century Florence in large

part because the Medici family was at the centre of a star-like structure of marriage and

business alliances, a patterning of inter-familial relations that could be efficiently

activated by – and only by – the Medici.  In contrast, the dense interconnections among

Cosimo’s political opponents, the traditional oligarchic families of Florence, hindered a

decisive response. In the crucial showdown, the oligarchic opposition to Cosimo

splintered into confusion and mistrust. Because of their dense pattern of ties, the

oligarchs knew who should take the field, so absences were treated as defection. The

Medici clients knew too little to feel betrayed.  They stayed; the oligarchs fled.

1.1 Global network structure and local network processes

So, networks differ, but in what sense? It is the global structure of the Florentine

network that counts in the description above. The argument rests on the patterning of

relations among all families. By global structure we refer to features that can only be

determined by examining the entire network (or at least large parts of it.) In the

Florentine families network, the juxtaposition of large patterns – a star-like structure

adjacent to a dense clique-like pattern – cannot necessarily be surmised by considering

individual nodes or their immediate network neighborhoods, i.e. more local sub-

networks. 
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In this paper, we contrast such broad global features with the local patterning

that could give rise to them1. Our representation of local structure relies on small

network configurations that we describe below as subgraphs involving only a few

network ties. We construe these configurations as the outcomes of local social

processes.  Network ties emerge, persist and disappear by virtue of actions made locally

at the scale of the individual actors in a network (whether they be persons, or families,

or companies, or some other social entity.)  Actors do not usually cast their gaze across

the entire network, possibly because in most cases they can only “see” what is in their

local social neighborhood (Pattison & Robins, 2002). On the basis of their localized

view, they form strategies and make decisions that intersect with those others who are

socially proximate. Combinations of these competing or complementary intentions and

actions constitute social processes that see the formation of local patterns of

relationships. These local patterns agglomerate to create the global structure.  The

strength of Padgett and Ansell’s account of the Medici lies in showing how the localized

processes – involving individual marriage and business partnerships within and across

neighborhoods of medieval Florence – led to the global features that mattered.

1.2 The role of computation and simulation

Because we can construe global structure as an agglomeration of local patterns,

an understanding of the global can be greatly enhanced by computational and simulation

techniques.  It is not inherently difficult to infer the local structural outcome of a simple

postulated local social process (e.g. as discussed below, a tendency to structural balance

                                                

1 Of course, in fractal-like structures (cf with the scale free networks discussed below), the global
structure mirrors the local, so it might seem specious to differentiate the two, at least in these cases. But
for any real network, we still need to examine the global structure empirically to determine that it does
indeed mirror the local, so the distinction stands.
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leads to localized triadic structures.)  What is not apparent, however, are the global

outcomes when several of these localized patterns combine, perhaps with different

strengths.  Indeed, except in a small number of cases (examples are discussed below),

computational techniques are necessary because analytic solutions are simply not

available.

The advent of computer technology enables us to traverse this conceptual and

methodological gap from individual local patterns to the possibility of various global

phenomena.  This is potentially a two-way process.  We observe certain global

properties of interest in a network (e.g. small world properties as discussed below). We

can then speculate how these properties might emerge from localized social processes,

develop a model embodying such processes, and then use simulation procedures to

investigate the global outcomes of this model. If the results mirror the global properties

of interest, we can then check whether some or all of the postulated local processes are

operative in the observed network.  

In other words, we do not see observation, modeling and simulation as

inherently different approaches towards understanding, but rather a potentially powerful

combination of tools that readily complement each other. In this paper, we concentrate

on the results of simulating from some simple but plausible models, but we are mindful

of the need to subject these models to stringent empirical testing. For instance, one step

that is needed to go beyond this paper is to show that the processes inherent in the

models are actually observed in empirical networks.2

                                                

2 For at least some observed networks, we have evidence that the models described below are indeed
plausible descriptions, not just on the basis of measures of fit, but also because important global
properties can be reproduced – see Robins (2003).
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1.3 Which global properties?

Despite the possibility that local patternings shape global properties of the

network, it is not always clear which global features are best to examine, or indeed

simply how best to describe global network structure. Sometimes, as in the Medici

example, important global qualities seem apparent3; but if we consider the range of

networks that Faust and Skvoretz (2002) attempted to compare, it is not at all obvious

what are the optimal criteria. Even so, the recent flurry of activity on small world

networks, following the seminal work of Duncan Watts (Watts & Strogatz, 1998; Watts,

1999a, 1999b), illustrates just how much can be gained by investigating one or two

global features that seem of general relevance, in this case the prevalence of short paths

in networks in the presence of some randomness.  Average path length is clearly a

global feature of a network. What local processes could make it “short”? 

Following Watts’s innovative approach, there has been an upsurge of exciting

research into global network phenomena with a focus on properties (described in more

detail below) such as path length, clustering and degree distribution (e.g., Amaral,

Scala, Barthelemy, & Stanley, 2000; Barrat & Weigt, 2000; Barthelemy & Amaral,

1999; Bohland & Minai, 2001; Comellas, Ozon & Peters, 2000; Kirillova, 2001;

Kulkami, Almaas, & Stroud, 2000; Mathias & Gopal, 2001; Newman, 2000; Newman

& Watts, 1999; Pandit & Amritkar, 2001; Pastor-Satorras & Vespignani, 2001; Yang,

2001). Much of this research concentrates on large-scale networks, including growing

networks such as the internet. One advantage of considering large networks with

indeterminate numbers of nodes is that asymptotic results may sometimes be available

                                                

3 at least, once Padgett and Ansell (1993) have done all the hard exploratory data analysis to reveal the
important structural features.



7

analytically, at least for simpler models. Albert and Barabási (2002) provide an

excellent review of this burgeoning literature. Examining this recent work, it is easy to

agree with Strogatz (2001) that the strongest response to the research challenge of the

small world has been mounted by statistical physicists.

1.4 Locally specified network models

Yet, despite its innovation and its rigour, this literature is strongly centered on

global network features with at best passing attention to the local processes that might

generate most real networks. Few of the models can be locally specified. The original

model of Watts (1999a) starts with an exogenous global structure (a large circle through

all nodes, termed by Watts a cyclic substrate and also known more technically as a one

dimensional lattice) and then introduces some local processes that add to that structure

(random edge addition combined with a tendency towards clustering, or triangle

formation).  In the short time since its introduction, this basic model has been used and

elaborated by many others, clearly constituting an important new approach to

understanding global features. But with an exogenous global structure as its starting

point, it is not locally specified, and so cannot tell us how small worlds might emerge in

real networks 4. 

Another well-known recent model is that of preferential attachment (Barabási &

Albert, 1999), where for a growing network a new node is attached to existing nodes

with a probability dependent on the degree distribution of existing nodes. This model

can be shown to result in a power-law degree distribution with resulting scale-free

                                                

4 Watts is currently developing new locally specified models to describe the results from the original
small world experiment of Milgram (1967), recognizing that his cyclic substrate model does not allow for
strategic search by actors for effective network partners (Watts, Dodds & Newman, 2002). Indeed,
without allowing for a search capacity, there is doubt that the original model can account for actors’ use
of short paths, given that they only have local information available to them (Kleinberg, 2000).
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properties. Here we have more of the flavor of a locally specified model, but to

determine the probabilities of attachment the new node has to “know” the existing

degree distribution across the entire graph.  This model has considerable strengths in

describing the structure of the internet, which is indeed an expanding network. But we

disagree with the claim by Albert and Barabási (2002) that most real world networks

describe open systems that grow by the continuous addition of new nodes. Such a claim

ignores the large amount of empirical work in a range of literatures – from the

anthropological to the organizational – that searches for an understanding of small scale,

relatively closed network systems. For instance, the membership of the Florentine elite

was relatively stable, in comparison to the changes in their inter-relationships resulting

from ongoing social and economic processes.  

Of course, the original Erdös and Renyi (1959) random graph model is much

closer to local specification. Here, L edges are added at random to a graph of n nodes,

sometimes referred to among social network analysts as the U | L model (the uniform

distribution of random graphs with a given number of nodes, conditional on the

presence of L edges.) A model with very similar properties posits that an edge between

pairs of nodes occurs independently and with fixed probability p (Gilbert, 1959),

sometimes referred to among social network analysts as the Bernoulli graph distribution

(Frank, 1981; Frank & Nowicki, 1993). The local specification of a Bernoulli graph is

clear because the probability of a tie between two nodes is independent of anything else

in the graph. If friendship networks could be reasonably described as Bernoulli graphs

(which they cannot), we could claim that any pair of humans has a given propensity to

friendship, irrespective of whatever other friendships may occur. A local specification

permits a ready translation into a process or behavior at the level of the actors, the nodes

in the network. 
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Local specifications generally assume a level of homogeneity, that there are

some effects observed locally that are reproduced across the entire network (for

instance, a fixed p for a Bernoulli graph). A homogeneity constraint assumes a system-

wide property, but in almost all social networks, the only intentionality in the system is

at the level of the actor, that is, locally (Robins & Pattison, 2001).  Similar arguments

provide the theoretical underpinning for Snijders’ actor-oriented models (Snijders,

1997, 2001; Van De Bunt, Van Duijn & Snijders, 1999). As Robins and Pattison (2001)

argued, the systemic property inherent in a homogeneity constraint may reflect shared

norms or behaviors across actors, norms or behaviors that could be construed as

inherent in the particular social relation for this group of people. Modeling based on

local effects presupposes some such level of sharedness of local behaviors across the

system (otherwise modeling is impossible.) Randomness in such models arises from

non-shared local behaviors. 

The extent of homogeneity is usually an unheralded issue. Many social network

modeling assumes at least homogeneity of nodes5 (i.e. the identity of nodes is irrelevant

to the model, so that the model does not presuppose that one node is more likely than

another to have, for instance, a given degree.). Node homogeneity is also a feature of

the Watts (1999a) cyclic substrate model, although not of the preferential attachment

model, where the nodes are ordered across time.

A purely local specification is not always appropriate. Clearly there may be

exogenous effects that operate at a global level (Robins & Pattison, 2001).  The CEO of

a company may impose an organizational restructuring; television does shape the

                                                

5 Except in cases where some form of blockmodeling might be the objective of the analysis (e.g. Nowicki,
& Snijders, 2001), or where the modeling explicitly includes observed or latent actor attributes (e.g., Hoff,
Raftery & Handcock, in press; Lazega & van Duijn, 1997; Robins, Elliott & Pattison, 2001).
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transmission of information; a computer company with a large market share may bundle

certain website addresses as pre-set features into its internet vehicles. These exogenous

actions are not local processes. Even so, they may influence but not determine the

underlying network effects. The restructuring may not work, and workers may revert to

some of their old alliances; the television news may be doubted and different

information transmitted locally; the computer user may choose not to utilize some

features of the package. So even when exogenous effects are apparent, some form of

local specification may still be required.

In this article, we use Markov random graph distributions (Frank & Strauss,

1986) – described in detail below – as a basis for locally specified models. We have

three principal aims: (a) to establish methods to assess and compare global structures for

distributions of small, possibly non-connected, graphs; (b) to use simulated Markov

graph distributions to investigate various types of global structures that may arise, using

different parameter values that can be related to a few very simple postulated local

processes; and (c) to illustrate how the scaling of parameters affects the transition from

randomness to deterministic structure.  We shall give examples of what we call small

world distributions of graphs with a given number of nodes, but we shall also show how

to simulate distributions of long path worlds, of relatively dense graphs with no

clustering, and of “degenerate”, highly structured worlds, such as the caveman graph of

Watts (1999a). 

Our third aim of parameter scaling can be distinguished from the scale-up

problem, which concerns the change in global outcomes as the number of nodes in the

network grows. Although the scale-up problem has a long tradition in random graph
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theory (Bollobas, 1985), we concentrate here on the scaling-up of parameter values in

networks with a constant number of nodes6. The parameter scale-up issue has been

ignored in the existing graph literature but we demonstrate that it is inherently

connected with the transition from randomness to regularity in graph structures (Watts,

1999a).  We make some comments on the impact of the size of the node set in our

conclusions, as a matter for ongoing work.

Our focus is the nexus between local specifications and global properties, not

specifically the small world. But as small world issues have featured so prominently in

recent work, and have been so helpful in permitting new ways of thinking about local-

global connections, it is useful to introduce our approach through that lens. In what

follows, then, we begin with a discussion of certain aspects of small world problems.

We then introduce our simulation strategy, including a description of exponential

random graph (p*) models, of which Markov random graphs are a sub-class. We give

examples of the various global structures that emerge with different parameter values.

We go on to discuss the effect of increasing parameter values, with examples of the

resulting deterministic structures. We conclude with a discussion of further work to

elaborate our general approach.

2. THE SMALL WORLD

Stanley Milgram (1967) famously concluded that the median number of

intermediaries required for one person in the U.S. to contact another person was five.

                                                

6 As noted earlier, the vast bulk of empirical network analysis focuses on networks with a fixed number of
nodes.
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Despite some important work in the intervening years (e.g., Kochen, 1989; Pool &

Kochen, 1978), small world ideas rather languished until given new currency in the

1990s (Watts & Strogatz, 1998; Watts, 1999a, 1999b). A social network of

acquaintances can be represented as a graph, that is, a structure comprising nodes, and

edges that connect pairs of nodes7. Watts (1999a) specified the properties of small world

networks in graph-theoretic terms (defined in detail in the immediate paragraph below):

a small world graph has low density and is highly clustered but has short characteristic

path lengths. Watts (1999b) noted some additional relevant properties about the human

social world: the number of nodes is very large, and the network is highly decentralized

in that there is no dominant node to which other nodes are directly connected (or

adjacent). As he noted, the juxtaposition of all of these characteristics seems

counterintuitive, yet they are features of many empirical networks, including social

networks (see also  Albert & Barabási, 2002). 

2.1 Terminology

Before discussing Watts’ approach to constructing a probabilistic model for

small world graphs, we first review some graph-theoretic and social network

terminology:

� a graph G = (N,E) comprises a set N of nodes, and a set E � N � N of edges,

each of which connects a pair of distinct nodes in N (we say that the edge e =

ij connects nodes i and j);

� the order of a graph is the number n of nodes in N;

� the size of the graph is the number L of edges in E;

                                                

7 In this article, we focus on non-directed networks. 
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� the density of the graph is the number of observed edges as a proportion of

the total possible number of edges, namely, 2L/n(n-1);

� the degree of a node is the number of edges incident to it, so that if there are

L edges in a graph of n nodes, the average degree per node k equals 2L/n,

and the density equals k/(n – 1);

� the degree distribution for a graph is the vector (d0,d1,…,dn-1) of degree

frequencies, where dk is the number of nodes having degree k;

� G� = (N�,E�) is a subgraph of G if N� � N and E� � E;

� a q-star is a subgraph of (q+1) nodes in which one central node is connected

by an edge to exactly q other nodes;

� a triangle is a subgraph comprising a set of three nodes (a triad), each pair of

which is connected by an edge;

� a path of length m is a sequence (e0,e1,…,em-1) of edges such that eh = ihjh,

ih+1 = jh and all nodes ih and jh are distinct;

� a geodesic between two nodes is the shortest path between them, taken to

have infinite length if there is no path between the two nodes;

� a connected graph has paths between all pairs of nodes (i.e. no geodesics of

infinite length);

� the local clustering coefficient Ci of a node i is the proportion of pairs of

nodes to whom node i is connected that are connected to each other.

Intuitively, we can define clustering in a graph in terms of the propensity for a

pairs of nodes to be connected to each other if they are connected to a common third
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node8.  The characteristic path length (P) of a graph is a measure of central tendency

(across the graph) of the length of geodesics.  Watts (1999a) defined clustering and

characteristic path length in the following terms:

� the clustering coefficient C is the average value across nodes of the local

clustering coefficient Ci;  

� the characteristic path length P is the mean geodesic length.

Clearly the small world phenomenon relates to characteristic path length. Some

major results relating to path length and connectedness are well-known in graph theory

(Bollobas, 1985). For U | L and Bernoulli graph distributions, the Erdös-Renyi theorem

(Erdös & Renyi, 1959) establishes that almost all random graphs with more than

n/[2ln(n)] edges are connected. Other important results used by Watts (1999a) include

that, for large n and k, the characteristic path length, P, for a random graph is of the

order of ln(n)/ln(k), and C is of the order of k/n.  So for low density graphs, the tendency

for clustering in a random graph is small. Moreover, P for random graphs is typically

short. So when a graph is an agglomeration of independent, randomly added edges, we

expect short characteristic path length but little tendency for clustering.  But certain

highly structured graphs, such as Watts’s (1999a) “connected caveman graph” (a graph

of small clustered components connected in one large cycle), have high levels of

clustering with long characteristic path length. 

2.2 Simulating random graph distributions

                                                

8 There is an alternative network usage of the term clustering to refer to the clustering of ties around
certain nodes through the formation of stars, with transitivity used as referring to triangulation (e.g. Frank
& Strauss, 1986). We use the term clustering as relating to triangulation in accord with the usage adopted
by the recent small world literature. 
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Watts’s (1999a) algorithm for constructing graphs concentrates on connected

graphs (i.e. with finite geodesics), particularly on graphs with a cyclic substrate. One

advantage in the adoption of a cyclic starting point is that because all networks under

consideration are connected, one can work with more analytically tractable mean path

lengths rather than (say) median path lengths. As discussed below, connectedness may

or may not be a problematic assumption depending on the type of network under

consideration.  

Under the algorithm, edges are added to the graph allowing for a tendency

towards clustering but with a variable degree of randomness (i.e. the algorithm permits

edges to be added at random, as well as according to the clustering criterion.) By

stopping the algorithm at a specified density, Watts observed some expected results.

With no randomness, graphs were highly clustered, but path lengths tended to be long,

as is the case of the connected caveman graph. With too much randomness, on the other

hand, the random component of the algorithm overwhelmed the clustering aspect, and

low clustering resulted, as is the case for graphs with edges added randomly. But Watts

also found that a small amount of randomness in the model resulted in a class of graphs

with relatively high clustering and short characteristic path length, that is, small world

graphs.  Watts developed an explanation of this shortening of paths through the

establishment of “short-cuts” across the large cycle.  Although we do not use a cyclic

substrate, the notion of short-cuts across a cycle is an important element in what we

present below.

Conceptually, our approach described below draws heavily on this work, but the

implementation differs in several important respects. We do not concentrate on

connected graphs, or graphs that originate from various substrates. Rather than using a

central tendency of characteristic path length, we investigate the distribution of
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geodesics. We simulate distributions of random graphs that have certain global

properties emergent from local dependencies among edges. To simulate, we use the

Metropolis algorithm with several advantages9. The first is that it permits us to simulate

stochastic models for social networks that are derivable from first principles using the

Hammersley-Clifford theorem (Besag, 1974) and so possess a principled statistical

basis. Different models embody different assumptions about the relevant local social

processes that might generate the network. Accordingly, we are able to interpret any

conclusions specifically in terms of local social processes that may or may not generate

global properties. The second advantage is that, in principle, the algorithm ensures

convergence to a given distribution irrespective of the starting point of the simulation.

As a result, we need not be concerned about a starting substrate, nor do we need to rely

on an arbitrary stopping rule. And we are able to derive statistics from a large sample of

graphs from a given distribution, giving generality to our conclusions. 

Before we describe the details of our approach, we discuss briefly some aspects

of clustering, and of characteristic path-length and connectedness.

2.3 Clustering

In network-theoretic terms, the idea of clustering is closely related to that of

structural balance (Cartwright & Harary, 1956), whereby individuals who are friends

(for instance) are consistent in their friendships (and non-friendships) with other people.

As Holland and Leinhardt (1970, 1971) recognized, structural balance essentially

involves the notion of transitivity in graphs, which in non-directed graphs is represented

                                                

9 Several algorithms could have been used; see Snijders (2002) for a review of some other possibilities. 



17

as the presence of triangles. If there is a triangle on a triad of nodes, the triad is

transitive. It will be apparent that a triangle comprises three 2-stars. If a 2-star (which

also involves a triad of nodes) is not part of a triangle, then that triad is intransitive.

Structural balance is a local process. We do not need to inspect the whole graph

to determine whether a particular triad of nodes is balanced or not. The proportion of

transitive to intransitive triads in the graph is an aggregate measure of the tendency

towards transitivity and structural balance, and hence of clustering. Because any triangle

contains three 2-stars, in what follows we use the proportion 3T / S2 as the clustering

coefficient C, where T is the number of triangles and S2 the number of two-stars

(Newman, Strogatz & Watts, 2001) in the graph as a whole10. (Note that C = 1 if all

triangles are transitive and the graph can be partitioned into completely connected

components.) In other words, the clustering coefficient assesses the sharedness of

balance-type processes across the entire network. As will be seen below, the statistics T

and S2 are also important in our models for Markov random graphs, so this proportion is

also naturally related to our method of graph simulation. 

2.4 Characteristic path length and connectedness

Watts (1999a) used the mean geodesic across the graph as the measure of

characteristic path length. The problem with utilizing a mean, however, is that it can

only be computed for connected graphs.  Can we expect the social networks we study to

be connected? Erdos and Renyi (1959) showed that almost all random graphs with

number of nodes n will be connected when the average degree is greater than ln(n). On
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a global scale, a network of a billion nodes would require average degree of around 20

for the Erdos and Renyi theorem to apply, assuming of course that the graph was indeed

Bernoulli. 

But ultimately it is unhelpful to do this simple calculation without taking into

account substantive considerations, in particular, the nature of the network under

consideration. The point is that individuals are embedded in many different social

networks, each of which arises from a social relationship of a particular type. The form

and properties of the underlying social relationship patterns a particular network. For

instance, we assume that average degree in a network of sexual relations is lower than

the average degree in a network of friends.  If we ask whether sexual networks are small

world (and hence, for instance, possibly vulnerable to rapid HIV transmission), we

cannot presume that the networks are connected. Even within the category of

“friendship”, where an average degree of 20 may be plausible, there are those who are

close and trusted (strong ties), and those who are not (weak ties).  Granovetter (1973)

argued that strong tie clusters are bridged principally by weak ties.  Accordingly, we do

not necessarily expect that strong tie networks will be connected, even for very large

graphs.11 And if we are dealing with small networks, connectedness clearly may not be

observed.

So our preference is to summarize the path length distribution of a graph in a

way that does not depend on it being connected. We therefore characterize the

                                                                                                                                  

10 This definition differs slightly from that used by Watts (1999a), the average of local clustering. The two
measures are in fact highly correlated.
11 Consideration of a network of only strong ties may be relevant, depending on the type of question being
addressed: for instance, it may be that certain types of information (e.g. with sensitive or risky content)
are transmitted only through trusted partners, and hence this information may not be spread through
small-world processes, even though for other types of less delicate information, small-world processes
may apply.



19

distribution of geodesic lengths in terms of certain order statistics, some of which may

be infinite if the graph is not connected. Where we require a single measure we use the

median. Moreover, as explained below, we examine geodesic distributions across a

distribution of graphs, so, for instance, a distribution of Bernoulli graphs will have a

particular profile of geodesic percentiles. We can then compare the profiles of

distributions of graphs with different properties12. 

3. EXPONENTIAL RANDOM GRAPH (p*) MODELS AND THEIR SIMULATION

We simulate exponential random graph, or p*, models for social networks

(Frank & Strauss, 1986; Pattison & Wasserman, 1999; Robins, Pattison & Wasserman,

1999; Wasserman & Pattison, 1996; Pattison & Robins, 2002).  First, we summarize the

formulation of the models, and then we comment on the application of the Metropolis

algorithm.

3.1 Exponential random graph (p*) models

To begin, we need some standard terminology and notation. Let N = {1,2,...,n}

be the set of network nodes and let the two-way n � n (binary) array x denote an

observed network on N (that is, xij  = 1 if there is an observed edge from node i to node

j, and xij  = 0 otherwise, with xii a structural zero).  Also let X denote a random graph or

network on N, with each possible edge, or tie, regarded as a random variable Xij.  For

the purposes of this article, we regard possible ties as nondirected (so that Xij = Xji).  

                                                

12 These steps imply that we are engaged in empirical examination of simulation results, and not seeking
closed-form analytical results, for which a median (or any percentile measure) is not usually amenable.
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In order to construct general models for Pr(X = x), we need to recognize that

there may be dependencies among the network variables in X. An analogous substantive

statement is that particular social ties may tend to be observed in the presence of other

ties. For instance, a tendency towards clustering and balance in a social system is, as

noted above, a tendency towards transitivity in the network. That is, the presence of a 2-

star tends to be associated with the presence of a triangle, or, in other words, the

presence of an edge linking i and j is likely to be affected by the presence of edges

between i and k, and k and j.  If this effect is indeed present in the network, then there is

interdependency among the variables Xij, Xik and Xkj. 

Frank and Strauss (1986) recognized that some fundamental theorems for

interdependent observations developed in spatial statistics could be applied to assumed

dependencies among network ties. Application of these results yields a general

expression for Pr(X = x) from a specification of which pairs of possible ties are

conditionally independent, given the values of all other ties.  Dependencies among

possible network ties may be represented by a dependence graph D.  Robins and

Pattison (forthcoming) provide a detailed summary of the use of dependence graphs in

models for social networks, but here we describe the representation in its most basic

terms. In a dependence graph, each network variable is represented as a node, with an

edge between two variables if they are dependent, conditional on all other network

variables.  The Hammersley-Clifford theorem (Besag, 1974) then yields an expression

for Pr(X = x) in terms of parameters and sub-structures corresponding to cliques of D13;

that is

                                                

13 A clique of a dependence graph D is either a single node (network variable) or a subset of nodes that
are all connected with each other by edges (i.e. a subset of variables that are all conditionally dependent
on each other.)
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Pr(X = x)  = (1/�) exp{�A�M �AzA(x)} (1)

where: 

a) the summation is over all subsets A of M, the set of all nodes in D (equivalent to the

set of all network variables in X); 

b) zA(x) = � (i,j)�A xij is the network statistic corresponding to subset A of M; 

c) � = �X exp{�A�AzA} is a normalizing quantity; and 

d) the parameter �A = 0 for all x unless A is a clique of D.

Each of the subsets A of network variables may be construed as a local social

neighborhood (Pattison & Robins, 2002), that is, a site of mutual contingency among

network ties, with such contingencies expressing a social process. For instance, in the

example of clustering above, the subset of possible ties A = {ij, ik, jk} constitutes a local

social neighbourhood and is a clique of the dependence graph. The binary statistic zA(x)

is computed from x and takes the value 1 if all the possible ties in the subset A are

present in x.  Then the subset A corresponds to a subgraph configuration in x (that is, the

possible triangle on ties in A is observed).  If the parameter �A is large and positive, the

probability of observing the network x is enhanced if the configuration corresponding to

A is present in x.  If we take A to be not just a particular triangle, but a generic triangular

effect (i.e. we suppose that the parameter �A is the same for all possible triangles in the

network14), then the statistic zA(x) becomes a count of triangles in the network, and the

parameter �A represents the tendency for transitivity (i.e., clustering) in the network.

More generally, the models express the importance of various types of network

configurations (e.g. triangles), with each network configuration relating to a parameter �
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and with the associated z statistic being a count of that configuration in the network.

The expression in (1) then represents a stochastic distribution of graphs with the

properties implied by the configurations (e.g. models with a triangle parameter express

tendencies to clustering.)

The simplest dependency structure is to assume no dependencies among network

variables at all (i.e. social ties are quite independent of each other; equivalently, the

dependence graph has no edges.) Allowing that the probability of any tie is constant

across all possible ties, we then have the class of Bernoulli graphs, and the model is:

Pr(X = x)  = (1/c) exp{�L(x)}

where L(x) is the number of ties in the network x and � is a parameter relating to the

number of edges (sometimes called the edge or density parameter.) Here the relevant

subgraph configuration is a single edge, and the model is expressed in terms of sych

configurations, i.e., the number of edges.

For social networks, the assumption of independent ties is generally implausible.

Frank and Strauss (1986) introduced Markov dependencies, whereby two possible edges

are assumed to be conditionally dependent if they share a node.  For nondirected

networks, the resulting model has parameters relating to a small number of

configurations: stars of various types, and triangles.  For the purposes of this article, we

shall concentrate on the four Markov configurations of Figure 1: single edges, 2-stars,

3-stars and triangles. The model then becomes:

Pr(X = x)  = (1/c) exp{�L(x) + � 2S 2(x) + � 3S 3(x) + �T(x)} (2)

                                                                                                                                  

14 Technically this step imposes homogeneity across isomorphic network configurations  (Wasserman &
Pattison, 1996). It corresponds to an assumption of sharedness of the behavior across the network.
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where � k and S k(x) refer to the parameter associated with k-star effects and the number

of k- stars in x, respectively; and � and T(x) refer to the parameter for triangles and the

number of triangles, respectively. The interpretation of the triangle parameter has been

discussed above in terms of clustering and balance; a k-star parameter relates to the

propensity for k-stars to be present in the network, that is, a tendency for individuals to

have connections with multiple network partners. Note that the Bernoulli graph

distribution is a special case of (2) with only the edge parameter non-zero. For a Markov

dependency assumption, the use of 2-stars and triangles has become standard. The

rationale for the inclusion of the 3-star parameters in the models is given below15.

(Figure 1 about here)

The model in (2) then represents a distribution of graphs based on edge, star and

triangle parameters. The parameters relate to local subgraph configurations. By setting

the parameters to particular values, and then simulating this distribution, we can

investigate certain global network properties across the distribution these graphs. 

3.2 The simulation strategy

We simulate graph distributions based on (2) using the Metropolis algorithm

(Gilks, Richardson, & Spiegelhalter, 1996).  This technique was first utilized for social

networks by Strauss (1986). In summary, the algorithm operates as follows. We decide

on the model we wish to simulate by fixing the values of the parameters, and we start

with a randomly chosen initial graph with a fixed number of nodes. At each iteration,

                                                

15 Model specification appropriate for observed networks is a vexed question. This is not an issue that
immediately concerns us here, but our current recommendation, based on the simulation results described
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we propose a new graph as a candidate for the next step in a Markov chain. The

candidate graph x� is determined from the current graph x by selecting at random a

possible edge from i to j and changing xij to 1 – xij. We accept the candidate graph as the

current graph whenever the candidate graph has an increased probability of being

observed according to (2). When the probability is not increased, we accept the

candidate graph with probability 

r = exp{�(L(x)-L(x�))+� 2(S2(x)-S2(x�))+� 3(S3(x)-S3(x�))+�(T(x)-T(x�)} (3)

The algorithm establishes a Markov chain on the state space of all graphs of order n and

converges to a distribution of the form of (2). There may be a “burn-in” period as the

chain moves away from the starting graph towards the distribution.

We have simulated graphs of various sizes from 30 to 500 nodes. Most of the

results we present here are based on graphs of 100 nodes, in part because larger graphs

cannot readily be depicted to illustrate various points.  Generally, we seek to simulate

distributions of graphs with low density, principally because high density graphs have

high clustering and short paths anyway, so that the small world nature of such graphs is

hardly in question. And, once again, it is easier to illustrate certain points with

depictions of low density graphs, as the clarity of an illustration is sometimes lost when

there are many edges present.  We achieve lower density graphs by adjusting the edge

parameter � in (2) as required.

In our simulations, we use 500,000 iterations. Burn-in is checked by observing

the stabilization of the statistics across iterations. As burn-in typically occurs relatively

early, we generally remove the first 50,000 iterations to ensure we are sampling from

                                                                                                                                  

below, is that at least 3-stars should be included in models fitted to empirical data. See also Robins,
Pattison & Woolcock (2002).
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the distribution. We then sample every 100th graph, giving a typical sample size of 4500

from each distribution. 

For each sampled graph, apart from the model statistics (number of edges, 2-

and 3-stars, and triangles), we calculate the following aggregate measures: degree

distribution; geodesic distribution in percentiles (although for simplicity we shall use

quartiles here); and clustering coefficient.  (We also collect, for depiction, a number of

graphs as typical representatives of the distribution.16)  So for our graph distribution, we

have an accompanying distribution of clustering coefficients.  The situation is somewhat

more complicated for degree distribution, for each sampled graph from the graph

distribution has its own distribution of node degrees.  For instance, in our sample of

graphs the frequency of nodes with degree 1 varies across a certain range. Below we use

a series of boxplots to represent this “distribution within a distribution”.

3.2 Comparing graphs and graph distributions

Our measures of global structure can be used to describe any of our sampled

graphs, but it is difficult to interpret them in the absence of a basis for comparison.  For

instance: on what basis do we judge a median geodesic length as “short”?  In the most

general sense, there are a number of possible comparisons that could be made: Pattison,

Wasserman, Robins & Kanfer (2000) illustrated how to draw judgments about global

structure through comparing a graph of interest against a range of different graph

distributions of increasing complexity.  Here, however, we make comparisons against a

                                                

16 We depict graphs using Pajek (Batagelj & Mrvar, 2002). 
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relevant Bernoulli graph distribution, because as explained above we expect graphs in

that distribution generally to have short average geodesics and low clustering. 

To consider the structure of an individual graph, our approach is as follows: we

simulate a comparative Bernoulli distribution of graphs.  We then examine the graph’s

clustering coefficient C against the distribution of clustering coefficients from the

Bernoulli sample.  If C is extreme in that distribution – that is, if it is greater than the

95% percentile – we say that the graph is highly clustered.  Similar, we say that the

graph’s median geodesic (G50) is short if it is not extreme compared to the distribution

of median geodesics from the Bernoulli sample – that is, if it is less than the 95%

percentile.  We can define short first quartile geodesics (G25) and short third quartile

geodesics (G75), similarly. (One could, of course, adopt more or less stringent versions

of these criteria.) We then define a small world graph as having a short G50 and high

clustering.

We need to determine the appropriate comparative Bernoulli distribution. We

simulate the Markov graph distribution and calculate the mean number of edges from

the sample. We then simulate a Bernoulli distribution with the same expected number of

edges.  We can then assess each graph in the Markov sample against the Bernoulli

sample as in the previous paragraph, and determine, for instance, the percentage of

small world graphs (noting that in the Bernoulli sample no more than 5% of graphs can

be small world by definition). This enables us to assess whether the local

parameterization tends to result in small world graphs or some other structure.  At the

same time, a comparison of degree distributions across the two graph distributions is

helpful in understanding the graph structure, as will be seen below.
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3.4 Frozen patterns

As we illustrate below, for some choices of parameter values, the simulation

may reach some particular high probability graph that remains as the current graph for a

large number of steps in the simulation.  Such behavior is common as the size of the

parameters increases.  Within the context of general pattern theory, Grenander (1993)

described such behaviour as freezing and posed what he termed the first limit problem:

how does the probability distribution behave as the interactions among variables are

made stronger?  In the context of model (2), the question becomes one of characterizing

the random graph distribution as the parameters become larger in absolute value.  As

Grenander demonstrated, scaling the parameters by an increasingly large constant

positive value 1/� inevitably leads to freezing. In particular, as the parameters become

larger (small values of �), the probability density becomes concentrated uniformly on a

subset of structures having minimum energy17: such structures are often very regular in

form and are referred to as frozen patterns.   Conversely, as � increases in magnitude,

the parameters of the model become very small and the graph distribution approximates

a Bernoulli distribution.  In the context of statistical mechanics, the parameter � can be

regarded as temperature – hence the description of patterns associated with small values

of � as frozen.

                                                

17 Define the energy of a graph x as H(x) = -�A�Az(x) and the minimum energy m as the minimum value
of H(x) over all graphs in the state space.  If K denotes the set of graphs with minimum energy m and 1/�
(�>0) is a scaling constant for parameters, then a scaling of the parameters of model (1) yields the model
given by Pr(X = x)  = (1/�) exp{�A�M (�A/�)zA(x)}. This model can be re-written in the form:

Pr(X = x)  = exp{-(H(x)-m)/�}/[�K�+�x��K{-(H(x�)-m)/�}],
from which it is clear that as � becomes smaller (and the model parameters become larger), the probability
of graphs in the minimum energy set K approaches 1/�K� and the probability of all other graphs
approaches 0. 
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The presence of freezing may be examined in several ways: for instance, by

observing low variance in the degrees of individual nodes across the iterations, or by

tracking the number of times a candidate graph is accepted by the simulation algorithm,

since freezing is characterized by a very small acceptance rate. 

3.5 Model interpretation and the importance of the 3-star parameter

We have discussed above a substantive interpretation of the triangle parameter

as a local social process relating to structural balance.  The edge parameter represents a

baseline tendency to form social ties. The star parameters are somewhat more complex.

The two-star parameter may be interpreted as a tendency to have multiple network

partners, as indeed may the three-star parameter. What we present here are models with

positive two-star and negative three-star parameters. Our substantive interpretation of

this parameter pattern is that actors tend to want multiple network partners (positive

two-star) but experience a cost in having too many (negative three-star). It should be

noted that higher order stars contain lower order stars, so that a node with degree four,

for instance, is at the center of 6 two-stars and 4 three-stars. Accordingly, there comes a

point in the degree distribution, determined by the relative values of the two- and three-

star parameters, at which a tendency for additional partners moves from positive to

negative. 

Models with 3-star parameters may also be required in order to construct models

that yield even rough approximations to observed networks. If the higher order star in

the model is sufficiently positive, the complete graph will be a minimum energy graph,

and the simulation will move towards the complete graph and stay there with very high
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probability18. Likewise, if the higher order star is sufficiently negative, then the null

graph will be a minimum energy network, and the simulation will gravitate towards the

null graph.   For example, if the only star parameter in the model is for a two-star, then

the null graph will be a minimum energy graph for sufficiently negative values of 	2

and the complete graph will be a minimum energy network for sufficiently positive

values of 	2.  Indeed, the range of values of 	2 for which probability is quite widely

dispersed across graphs in the state space may be quite small.  For example, in Figure 2,

we show graph statistics for graphs in the distribution for the model with a fixed edge

parameter 
 and varying 2-star parameter 	2.  It is clear from these figures that while the

effect of 	2 is dependent on the value of 
, there is a relatively low range of parameter

values for which the corresponding graph distributions have average densities in other

than the very low or very high range.  Thus, models with just an edge and a 2-star

parameter may be too simple to capture some important characteristics of observed

networks (such as some simple aspects of connectedness).  Of course, the behavior of

the models changes with the addition of a triangle parameter, but many of the same

features persist.  Accordingly, we have included a non-zero 3-star parameter in all of the

models that we simulate below. (It is worth noting that stars are related to the degree

distribution, so that to model up to 3-stars is in effect to model the first three moments

of the degree distribtuion.)19 

                                                

18 For this class of models, the issue of model degeneracy for certain parameter values was first discussed
by Strauss (1986). By model degeneracy, Strauss (1986) meant situations where H(x) tended in
probability to a minimum as the number of nodes became large.  In fact, this notion of degeneracy relates
to what Grenander (1993) terms the second limit problem: how does the probability distribution behave as
the order of the graph (and hence the number of random edges in the model) tends to infinity?  Handcock
(2002) showed that certain degenerate parameter regions can be determined analytically (including those
relating to positive star parameters). 
19 There is an alternative simulation strategy conditional on a fixed number of edges, L.  In this version,
the Metropolis-Hastings algorithm operates by selecting at random two pairs of nodes, with an edge



30

4. SIMULATION RESULTS

4.1 A distribution of small world networks

With our model parameterization, it is in fact not difficult to produce small

world graphs through a judicious choice of parameter values. So we begin by presenting

a distribution in which a substantial majority of graphs satisfy our small world criteria,

and then by adjusting the parameter values we change the features of the distribution in

ways that are revealing. For these simulations, we are aiming to produce graphs on 100

nodes that have around 100 edges, so density is quite low, approximately 2%.

The Markov random graph distribution we present is based on the following

vector of parameter values (– 4.0, 0.1, – 0.05, 1.0), where the values are for the edge,

two-star, three-star and triangle parameters, respectively. The mean number of edges for

graphs in this sample was 115; the sample from the comparable Bernoulli distribution

had a mean number of edges of 116.  Table 1 presents the basic graph statistics for the

Markov random graph sample, with those for the Bernoulli sample. We see that the

mean of the basic statistics are similar, except for triangles and hence for clustering. 

Of course, we could perform the usual null hypothesis statistical tests to

determine whether there are significant differences between the means in Table 1, but at

conventional alpha levels for two independent samples of 4500 each, we have rather

                                                                                                                                  

between only one pair.  In the candidate graph, the edge is then transferred to the other pair of nodes with
the candidate accepted under the usual conditions of the algorithm.  This preserves the number of edges in
the graph. The appropriate comparison distribution is then U | L.  In this version of the simulations, the
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excessive power, with a capability of detecting even slight differences. It is more

appropriate in these circumstances to use a measure of effect size. There are various

possible measures of effect size that could be used. We present here the differences

between means scaled in terms of the standard deviation from the Markov random

graph distribution, ��1 – �2)/	.  For the means in Table 1, the difference in means does

not exceed 0.08 of a standard deviation, except for the triangles, where the difference is

0.45 of a standard deviation, and for the clustering coefficient, where the difference in

means is 1.3 standard deviations. We infer that there is a substantial effect for clustering

in the Markov distribution.

Table 1 about here

In the Markov random graph distribution, 76% of graphs have short G25, 74%

have short G50 (the 95% cut-off in the Bernoulli graph distribution is a median path

length of 7), but only 39% have short G75; 65% of these graphs have high clustering

and as all of these have short G50, in this distribution 65% are small world according to

our definition. What seems to be happening here is that the increased clustering is not

greatly affecting median path length (G50) but is at the cost of increasing the “long”

geodesics (i.e. above the third quartile G75). This is illustrated in Figure 3, which

compares median geodesics and third quartile geodesics for both distributions. The

patterns of median geodesics are not greatly different, but for the longer geodesics there

are substantially more infinite G75 in the Markov graph distribution. And the

comparison of degree distributions indicates that there are not great differences between

the two samples (Figure 4).

                                                                                                                                  

edge parameter does not enter into the difference in probability from the current to candidate graph. In
this case, it is desirable to have 2-, 3-, and 4-star parameters in the model.
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Figures 3 and 4 about here

Finally Figure 5 presents a representative graph from the Markov graph

distribution. This is a small world graph with 126 edges, a median path length of 5, and

a clustering coefficient of 0.09.  To the eye, the graph does not appear greatly different

from a Bernoulli graph (not presented here): a couple of important features are a

tendency for some long cycles and plenty of nodes with degree of four, five or more (in

line with Figure 4). It is worth noting that many of the cycles intersect one another. In

terms of Watts’ (1999a) notion of short-cuts, two cycles that jointly intersect create

shortcuts for each other. This seems a highly efficient way to create short paths. It is

also worth noting that a node that is at the intersection of two cycles must be at least a

four-star.

Figure 5 about here

4.2 Long path networks

We now present results for a simulation with parameters (– 1.2, 0.05, – 1.0, 1.0).

Compared to the previous example, the most important change is to adjust the three-star

parameter to be strongly negative, at the same time as to increase the edge parameter to

achieve a comparable density of around 2%.  We produce a Markov graph sample with

a mean number of edges of 123.8 (SD=3.9).  Not surprisingly, the graphs in this sample

have fewer stars, especially higher order stars, compared with the Bernoulli: for the

Markov graph sample, the mean number of three stars is 70.3 (SD = 10.2) compared to

237.0 (SD=84.6) for the Bernoulli sample (difference in means is 16 standard

deviations).  But despite the positive triangle parameter, the mean clustering coefficient

for the Markov graph sample of 0.027 (SD = 0.02) is not substantially different from the

mean clustering coefficient of the Bernoulli sample (0.025, SD=0.02, difference in
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means is 0.1 of a standard deviation). According to our criteria, only 5% of the Markov

graphs are highly clustered. The differences in the number of stars is clearly illustrated

by the truncated degree distribution of the Markov graph sample (see Figure 6). At the

same time, most of these graphs have long G25 and long G50, although interestingly,

few of the Markov graphs have infinite G75, whereas a substantial proportion of the

Bernoulli graphs do. Apparently, as the short and median geodesics tend to be longer in

the Markov graph sample, more nodes become connected, so that there are fewer

infinite geodesics. This is borne out by Figure 6, where the number of isolated nodes

(NO_D0) is lower in the Markov graph sample.

Figure 6 about here

In Figure 7, we present a graph from the Markov graph sample that illustrates

the effect of the longer G25 and G50. This graph is not entirely representative of the

sample because it has a high clustering coefficient (0.09); even so, the rather tight

“circularity” of the graph in Figure 5 is now less pronounced, there are no isolated

nodes and, importantly, there are few stars of higher order than three. As a result, there

are few mutually intersecting cycles.  

Figure 7 about here

To illustrate the point further, we present in Figure 8 a graph from a distribution

generated from parameter values (– 2.2, 0.05, – 2.0, 1.0).  For this model, we have made

the negative three-star effect even stronger, and adjusted the edge parameter. Without

presenting all the details, over 80% of these graphs have long G50, and only 15% have

high clustering, with only 1% small world.  It is clear that the graph with 82 edges in

Figure 8 has long paths and zero clustering.  We compare it with an example of a

Bernoulli graph with 86 edges in Figure 9. At this lower density, we see that the
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Bernoulli graph has itself a number of long paths, but the higher order stars continue to

create several larger intersecting cycles.  

Figures 8 and 9 about here

4.3 A local process to produce a global small world

Of course, we are not claiming that these types of simulations represent the only

processes that can give rise to a small world.  What we do wish to illustrate is how

locally specified effects may produce particular global structures.  Substantively, we

argue that a network is likely to be small world if the following conditions apply:

� individuals seek more than one network partner, 

� but the costs of maintaining many partners are high, so there is a tendency

against a multitude of partners;

� there is some tendency for network partners to agree about other possible

partners (i.e. structural balance and clustering);

� but this tendency is neither too strong (else the network becomes too clique-

like with insufficient links between cliques for smaller geodesics – which we

illustrate below), nor too weak (else there is little clustering in the network).

The last condition might even be interpreted in terms of Granovetter’s (1973)

strong and weak ties argument. If all we have are strong ties, which tend to cluster, then

our “reach” across the network is limited.

In an organizational context, DeCanio, Dibble and Amir-Atefi (2000) argued

that an efficient communication structure in a network can emerge through mutually

intersecting cycles, resulting from a tendency for multiple partners combined with a cost

against having too many partners.  They performed a series of simulations based on cost

and reward functions that in effect implemented such rules.  This result does not seem to
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be widely known among small world researchers.  Of course, a short-cut as defined by

Watts (1999a) is a global feature (because one can never be sure that a path is indeed a

short cut unless one knows about the structure of the rest of the graph). But the basis of

the simulations by DeCanio et al (2000), as embodied in their cost and reward functions,

is locally specified. The fact that these simulations produce short-cuts through mutually

intersecting cycles, in conjunction with our results reported here, provides one possible

local description of how short paths may emerge.

4.4 A denser non-clustered “world”

We now give an example of a denser network simulation, where what is of

interest is not so much geodesics length (because as noted above path length tends to be

short in denser graphs anyway). Rather, in this example we wish to make some points

about the degree distribution and also to illustrate a tendency against clustering. We

simulate for a strong propensity for multiple partners, while retaining some cost against

too many partners, but with a large negative clustering effect, using the parameter

values (– 3.2, 1, – 0.3, – 4.0).  In this case, we have not fully compensated with a large

negative edge parameter to create very low density graphs. The strong tendency for two-

stars results in a sample with a mean number of edges of 371.9 (SD=4.9), implying a

mean density of 7.5%, three to four times greater than in the previous samples20. The

first point to note is that the negative triangle parameter successfully removes most

triangles from the Markov graphs, with the mean number of triangles being 1.11

(SD=1.03) compared to 68.1 (SD=13.4) in the comparative Bernoulli sample. The two

                                                

20 At this density distinctive features in the structure are not readily discernible to the eye, so we do not
present examples of actual graphs.
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degree distributions are presented in the top two panels of Figure 10. It is immediately

apparent that the Markov samples has a degree distribution that is truncated at both ends

compared to the Bernoulli sample.  

Figure 10 about here

Of course, this result in part arises from the restriction on the number of nodes.

Substantively, these parameter values can be interpreted to describe persons who wish

to have many network partners but have only 99 others from whom to choose.  Hence

we see very few low degree nodes.  (In that sense, the effect of the actual parameter

value is dependent on the number of nodes, an issue we discuss further below.) 

It is interesting to compare this result with the degree distribution for a

simulation without the negative triangle (negative ) effect, with parameters    (– 3.2, 1,

– 0.3, 0.0). The sample for this distribution has a mean number of edges of 383.1

(SD=5.0), some two standard deviations above that of the negative  distribution, but

has a mean number of triangles of 53.6 (SD=6.9), over seven standard deviations above

the negative  distribution. This is not surprising. What is interesting, however, is to

consider the degree distribution, which is presented in the bottom panel of Figure 10.

While there are some differences between the two Markov degree distributions, they

nevertheless seem quite similar in comparison to the Bernoulli distribution. An

important point to make here, then, is that knowledge of the degree distribution does not

necessarily give knowledge about clustering.  We surmise, then, that the scale-free

graphs of Barabási and Albert (1999) may be scale-free in terms of degree distribution,

but not necessarily scale-free in terms of triangle distribution.

The absence of triangles is not just a curiosity but has substantive interpretation.

There are real social networks where we see fewer triangles than in random networks,

for instance, networks of heterosexual partners.  What we have in the sample of
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negative  networks are graphs with hardly any triangles (three-cycles) but many four-

cycles21.  We might expect to see such patterns in promiscuous heterosexual networks,

with triangles perhaps more prominent in homosexual (and maybe bisexual) networks.

The balance between three- and four-cycles in a sexual network may then relate to

levels of multiple partnerships among and across actors of different sexual orientation.

Such outcomes have clear implications for the understanding of HIV networks.

Sexual networks are a simple example of the possible relevance of four-cycles as

opposed to three-cycles.  But they are not the only example. In organizational contexts,

for instance, four-cycles have important theoretical implications in terms of generalized

exchange and the building of trust (Lazega & Pattison, 1999).

5. RANDOMNESS AND STRUCTURE

We introduced frozen patterns earlier as minimum energy graphs and we

observed that there is a tendency for the simulation algorithm to become “trapped” by

such graphs. Although this break-down of the Metropolis algorithm is deleterious in

terms of producing an adequate simulation of the graph distribution, such regions of the

parameter space are often interesting in their own right, because they represent regular

structures.  More broadly, one can view these as regions of parameter space where

stochasticity is not applicable and where deterministic regularities apply.  Such “frozen”

patterns represent regular and stable structural forms: a description of the forms that

they take, and the class of models from which they are derived, are of theoretical

interest in their own right.  As we noted earlier, we can consider � as a “temperature”

                                                

21 That is, cyclic paths that involve four nodes.
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factor, so that as the temperature increases, the model can move from a frozen to a

random structure.

5.1 From caveman graphs to random graphs

Watts (1999a) introduced caveman graphs as part of his initial argument about

the importance of paths. These graphs comprise subsets of nodes (the caves), which are

fully connected within subsets but have no connections between subsets (i.e. several

complete components in the graph, with no connections between components.) A

connected caveman graph has a cyclic pattern connecting the caves.  These two graph

types are clearly highly structured, and the chance of observing them in a Bernoulli

distribution of graphs is miniscule.

We present here a series of simulations with a fixed set of values that, once

scaled by a temperature factor �, become the parameter values. For ease of visual

presentation of graphs, we fix the number of nodes to 30 in this illustration. We select a

vector � = (– 3.2, 1, – 0.3, 3.0); these values are based on the previous example, except

that here we need a large and positive triangle value (necessary to create the “caves”)22.

In Figure 11, we compare two graphs from simulations for �=1 and �=6. The graph for

�=1 in the top panel of Figure 11 is a deterministic caveman structure, comprising two

fully connected components of 15 nodes each. The second graph, however, is a much

more random structure, as we explain below.

Figure 11 about here

                                                

22 The size of the triangle parameter, relative to the other parameter values, determines the number and
size of the caves. As shown in Figure 11, the value of 3 chosen here produces two caves when �=1,
whereas if we had chosen a value of 2, the result would be three caves. 
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When � = 1, every sampled graph from our simulation has 210 edges and

clustering coefficient of 1.  Across the sample (after burn-in), the degree of each vertex

never changes (which means that no changes to the graph are accepted for every 100

iterations). Clearly this simulation has “frozen”, mirrored by the deterministic transitive

structure presented in Figure 11.  We have checked this simulation with a number of

random starts to ensure we have not found a local energy minimum. In all cases, two

large “caves” resulted although there might be variation in the size of the caves with the

number of nodes varying between 13 and 17.23 As the temperature increases some small

variation begins to appear. For instance, by the time �=4, a mean of 2.6 changes to the

graph are accepted for every 100 iterations, so the structure is not completely frozen. In

the �=4 sample the mean number of edges is 205 (SD=2), and the mean clustering

coefficient is 0.97 (SD=0.01). The median G50 is infinite.  Yet, at some point between

�=4 and �=6 we see a phase transition, as the structure “melts”.  (At �=5, for instance,

much longer runs are required to burn in to a relatively deterministic two cave structure,

indicating closeness to a transition.) 

At �=6, however, the distribution shows no signs of being frozen at all. The

graph in the lower panel of Figure 11 has 175 edges and a clustering coefficient of 0.44.

Across the sample, the mean number of edges is 173.5 (SD=5.6), and the mean

clustering coefficient is 0.427 (SD=0.02). In this simulation, an average of 65 changes

to the graph are accepted for every 100 iterations. And the median G50 is now 2.  Yet

this is not quite a totally random graph distribution. A comparable Bernoulli graph

sample indeed has a median G50 of 2, but has a mean clustering coefficient of 0.395,

                                                

23 We have similarly checked other simulations described in this section with multiple starts to reach
consistent conclusions.
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over one and a half standard deviations below that of the �=6 sample. So a large

proportion of graphs in the Markov sample are more highly clustered than the Bernoulli

graphs, but have similar median path lengths, that is, they are small world graphs. But

by the time we increase the temperature to �=10, there is little to differentiate the sample

from a comparable Bernoulli sample24. For instance, the mean clustering coefficient is

0.42 (SD=0.02) compared to 0.41 (0.03) for the comparable Bernoulli sample, with

median G50 remaining at 2 for both samples.

This result concurs with those of Watts (1999a), in that at a certain temperature a

small addition to “randomness” (in our case, a small increase in temperature) pushes a

structured graph distribution with long median geodesics into a stochastic distribution

with frequent small world graphs. The ratios of the parameter values are of course

retained as temperature changes, but these ratios determine the frozen structure. So the

particular ratios chosen here lead to a clustered caveman world for low temperatures,

whereas for our first small world example above, decreasing the temperature results in

an empty graph, principally because in that case we chose parameters to produce a low

density graph.  

Figure 12 about here

We have experimented with various parameter ratios, and with judicious choices

we can produce various structural forms at low temperatures. We show some interesting

examples in Figure 12 that involve negative triangle parameters, producing cyclic

structures of various types.  In the top panel of the figure we have a structure of cycles

produced from the parameter vector (– 5.0, 1.0, – 1.0, – 6.0).  The first point to note is

that this structure has five structural equivalence classes and could be simplified into a

                                                

24 Although the Bernoulli sample does seem to have somewhat wider dispersion for the statistics.
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perfectly fitting block model (White, Boorman & Breiger, 1976). There are no within-

block ties, and each node is tied to every other node in two other blocks. This structure

can be construed as a “frozen” generalized exchange structure, highly reminiscent of

Bearman’s (1997) cycle of marriage exchange among residents of Groote Eylandt

(except that the marriage cycle had eight equivalence classes.)  The same distribution

produces another variation, a six block structure of cycles as in the second panel of the

Figure. By adjusting the parameters slightly, with a parameter vector (– 4.2, 1.0, – 0.05,

– 6.0) , we produce the graph in the bottom panel of Figure 12, a complete bipartite

graph.

6. CONCLUSIONS

In this article, we have (i) shown how to simulate a distribution of Markov

random graphs based on assumptions about simple local social processes; (ii) developed

a method to examine the resulting global structures by comparison with an appropriate

Bernoulli distribution of graphs; (iii) provided examples of various stochastic global

“worlds” that may result, including small worlds, long path worlds and dense non-

clustered worlds with many four-cycles; (iv) suggested one locally-specified social

process that may result in small-world global properties; (v) shown how parameter

scaling relates to the movement from structure to randomness, with a phase transition

occurring at a certain scaling (“temperature”) so that a non-stochastic structure “melts”

into a stochastic counterpart; and (vi) provided examples of “frozen” deterministic

structures, including highly clustered “caveman” graphs, bipartite structures, and global

cyclic structures involving structurally equivalent groups. 

There are some important points to make that bear on future work. First of all,

our methods are deliberately based on small-scale fixed-node networks, which
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consititute a large proportion of the empirical work involving social network analysis.

Using these methods, an empirically observed network can be compared to an

appropriate Bernoulli graph distribution to investigate levels of clustering, geodesic

length and degree distribution, permitting an examination of global structure. The

methods could be further built on by the comparison of an observed network against a

range of graph distributions with given properties expressing certain structural

hypotheses, as in Pattison et al (2000). Such empirical examination need not be

confined to unimodal networks: we are currently studying global structures of

interlocking directorships through similar approaches to bipartite graphs (Robins &

Alexander, 2003). On the other hand, to consider local structure, one might fit an

exponential random graph (p*) model to the network, using recently developed Monte

Carlo maximum likelihood techniques (Handcock, 2002; Snijders, 2002)25.  Even so,

model specification remains an important issue, especially with the need to avoid

degenerate regions of the parameter space.  

But these methods open additional possibilities for model examination:  by

fitting models and then producing a distribution of graphs as described above, a

researcher can investigate whether the model is successful in reproducing aspects of the

observed global structure. If the global structure is not successfully reproduced, then it

may be that model specification should be reconsidered. In our introduction, we argued

that observation, modeling and simulation should not be seen as separate, but rather as a

package of complementary tools. To examine simulated global structure from a model

                                                

25 Approximate pseudo-likelihood techniques (Strauss & Ikeda, 1990), previously a standard approach,
should now be relied on only when maximum likelihood is not feasible.
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fitted to an observed network may be a demanding test of model specification26, but it

clearly illustrates the value of combining these approaches.

Even though our focus has been on fixed node networks, the effect of given

parameter values for networks with different numbers of nodes is an important issue.

This is a matter for ongoing work.  There are conceptual problems here, however, as the

number of nodes becomes increasingly large. The Markov random graph dependence

assumption imposes dependency among all possible ties from one actor to all other

actors.  This seems to us, ultimately, to be untenable on substantive grounds: individuals

do not “know” all other actors in a large social network, and may have no plausible

opportunity to meet some “distant” actors. In what sense can such highly unlikely ties

be said to influence possible ties to those who are much more socially “proximate”? It is

for such reasons that Pattison and Robins (2002) introduced the notion of overlapping

social settings as “social locales” within which dependency amongst ties can come into

being. In this case, examination of node scale-up issues may not require extension to

graphs of indeterminate size.

There is much to be done on parameter scale-up, the transition from randomness

to structure.  As this transition occurs, stochastic models break down and we see

instances of degeneracy. But we hope to have shown here that “degenerate” regions of

the parameter space do not simply represent “badly behaved” stochastic models. Rather

these regions may exhibit the type of deterministic structures on which much of social

network analysis has focused.  We have presented some simple examples here but there

are more complex possibilities: in a multiple network framework, Pattison (2002)

                                                

26 Although not an impossible one – see Robins (2003).
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showed how “freezing” a stochastic model can result in classic balance and strong-weak

tie descriptions.

We began by referring to the global structure of the Medici network as the

outcome of local social processes.  Clearly, the Medici were particular in that network,

and Padgett and Ansell make clear why they were historically special.  In the end, our

models may not be able to rest on node homogeneity.  The qualities of the actors are

likely to count.  It is in the interplay of actor attributes and network ties that more

realistic local social processes will be described.  Thus, an important next step is to

extend the approach described here to social selection models (Robins, Elliott and

Pattison, 2001), to social influence models (Robins, Pattison & Elliott, 2001) and to

dynamic conjunctions of the two.  It remains to be seen exactly what the implications of

these extensions will be for global structure, but it is likely that such a move will have

the added benefit of modeling the greater dispersion of degrees typically seen in

empirical networks compared to homogeneous random graphs (Albert & Barabási,

2002; Pattison & Wasserman, 2002). 
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Table 1

Graph statistics from Markov random graph and Bernoulli samples

Markov random graph sample

Mean

(Standard deviation in

brackets)

Bernoulli sample

Mean

(Standard deviation in

brackets)

Edges 115   (12) 116  (10)

Two stars 270   (53) 266  (49)

Three stars 205   (64) 202  (65)

Triangles 5.5   (7.8) 2.0  (1.5)

Cluster coefficient 0.06  (0.03) 0.02  (0.02)
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Figure 1

Configurations represented by parameters in the model:

Single edges; 2-stars; 3-stars; triangles
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Figure 2

Mean numbers of edges and 2-stars in simulated graph distributions on 30 nodes

for edge/2-star models with various parameter values.
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Figure 3

Frequencies of median geodesic (G50) and third quartile geodesic (G75):

Markov graph sample and comparison Bernoulli graph sample
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Figure 4

Small worlds: Degree Distribution for Markov graph and Bernoulli samples

(NB: NO_Dn refers to the number of nodes of degree n. Boxplots indicate the range of

NO_Dn across the sample; outliers are excluded.)
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Figure 5

A small world graph
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Figure 6

Long paths: Degree Distribution for Markov graph and Bernoulli samples
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Figure 7

A graph with long median paths and high clustering
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Figure 8

A long path graph with low clustering
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Figure 9

A Bernoulli graph
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 a. Negative triangle parameter

 b. Bernoulli sample

c. Zero triangle parameter

Figure 10

Degree distributions for some denser graphs
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�=1

�=6

Figure 11

Effects of parameter scaling for two temperatures
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Cyclic structures with 5 structural equivalence classes

Cyclic structures with six equivalence classes

Complete bipartite graph

Figure 12

Some “frozen” graph structures
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