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Abstract 
Protein-protein interactions play important role in various biological processes. These 

interactions inside an organism constitute a complex network. A global view of this 

network is very useful in providing molecular and genetic scientists with a reference 

guide to aid detailed exploration of the functions of proteins. In this thesis, we build up a 

network, named as CID(Connected Interaction Database), whose links are defined as the 

interactions between proteins in S.Cerevisiae. The topological properties of this CID 

network have been studied and compared with another network called CSD (Connected 

Similarity Database), in which a link denotes either a physical interaction or functional 

similarity.  The topological results imply that both CID and CSD possess the “small 

world” structure, where shortcuts play important role in shortening the path length 

between different clusters. We propose a graph-coarsening algorithm based on these 

shortcuts and cut nodes to identify clusters presented in these network and generate a 

simplified “backbone” structure of CID and CSD. Studies on the “functional” distribution 

inside some clusters demonstrate that proteins with similar function (in broad sense as 

referring to both “cellular role” and “biological function”) are more likely to be clustered 

together. Using the combination of physical interaction and sequence similarity data, we 

correctly predicted functional categories for 82.67% among the 3,116 characterized 

proteins with at least one partner (the proteins that have connections with the protein 

under study) of known function and functional categories for 907 previously 

uncharacterized proteins have been predicted.    
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Chapter 1 

Introduction 

Protein-protein interactions play important role in various biological processes such 

as the regulation of cellular pathway, the formation of enzyme complexes, etc. With the 

availability of complete genome sequences and the development of high-throughput two-

hybrid system, large-scale identification and characterization of these interactions have 

been performed in several research groups1. In particular, yeast Saccharomyces 

Cerevisiae has received extensive study since its genome was sequenced in 19962. 

Recently, the Fields group at Howard Hughes Medical Institute analyzed published data 

on more than 2,709 interactions involving 2,039 different yeast proteins and assembled 

the first map of yeast protein interaction network1.   

Even though this protein interaction map might be incomplete or even contain some 

error links due to limited information available for this huge protein database, it is still 

very useful in providing molecular and genetic scientists with a reference guide to aid 

detailed exploration of the functions of yeast proteins. Using this map, Fields group 

correctly predicts the functional category for 72% of the 1,393 characterized proteins 

based on the known functions of its interacting partners. In addition to protein function 

prediction, this database of interactions has also been combined with DNA microarrays 

and quantitative proteomics to analyze the perturbations to critical pathway components 

in a cellular pathway model3. More than that, study of protein under global proteins 

interaction network has revealed more unidentified information such as the relationship 
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between lethality of a protein and its centrality in the protein interaction networks4. Based 

on the above observation, one objective of this thesis is to understand this interaction map 

from a large-scale perspective and explore the relationship between the underlying 

topological connectivity and the biological structure of this interaction network. We 

anticipate that such study might provide us more insights into the biological process that 

generated such network.  

The thesis will start with some basic introduction about the major terminology used, 

followed by an overview of the source data used in our protein-protein interaction 

network. Then, we explore this “gold mine” from a topological view covered in Chapter 

2. Next, a graph coarsening algorithm based on the “small world” connectivity presented 

in this network is proposed in Chapter 3, ending with a “coarsened” globular graph for 

this network.  The biological relationship inherent in some clusters identified has been 

studied. In this thesis, we build a new version of protein connectivity network by 

considering not only the interactions between proteins, but also the sequence similarity. 

In Chapter 4, we report a more accurate result of functional predication from this new 

map.  The topological properties of this new network are also studied in Chapter 2.  

Finally, the summary of results in the thesis is presented in Chapter 5.  
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Chapter 2 

Topological Study 

2.1 Graph Theory 

Many systems in nature, from the neural networks in the biological world, the social 

structure in our communities, to the Internet and World Wide Web, can be effectively 

represented by a graph G(V, E) where V(G) is the set of vertices V(G)= {v| v∈  G} and 

E(G) consists of edges E(G) ={e | e∈  G}. In such a graph, each vertex v represents a 

single element of the system (a neuron in the brain, a person in our society, or a web page 

on the WWW), while an edges e is the links or connections(neuron interaction, 

friendship, or web page hyperlinks) between the vertices. Throughout this thesis, we may 

use vertex or node interchangeably to represent a single element in the network. We also 

refer to the number of vertices in G as |V| and the number of edges in G as |E|. All the 

graphs under study are considered as undirected and unweighted. 

In order to understand the dynamic behavior of a natural system, it is very important 

to explore the topological properties of the underlying network, which is a major research 

area in graph theory. Many terms have been introduced to facilitate the study. In this 

thesis, the following terminology will be frequently used in our discussion.  



 

1) Degree: The number of edges incident on a given vertex ν, i.e., the size of the 

adjacent list of ν, is denoted as kv. The average degree k of a graph G refers to the 

number averaged over G. 

2) Leaf node:  A vertex µ with kµ = 1 is called a leaf node. One example is node µ in 

Figure 2.1 

 

 
 
 
 
 
  

Figure 2. 1 µµµµ  is a leaf node in this graph, and

 
3)  Minor node: As shown in Figure 2.1, verte

and ν2, even though the removal of edges

changes to the overall graph connectivity, 

(ω1,ν2) and (ω1,ν1) into edge (ν1, ν2) wi

condition, we call ω1 a minor node.    

4) Shortcut(r):  For an edge (µ,ν)∈  E(G), wh

nor ν is a leaf node or minor node, if the s

vertex ν is larger than r at the absence of e

of graph G(V,E) at level r ( r ≥ 2).   

5) Distance d:  Let µ ∈ V(G), ν∈  V(G), the 

shortest path length between node µ and ν.

d(µ,ν) equals to the minimum number of 

µ 

 
ω1 ν1 

2
 ω2
ν
4 

 ωωωω1 and ωωωω2 are the minor nodes. 

x ω1 has only two connections with ν1 

 (ω1,ν2) or (ω1,ν1) might bring some 

removal of vertex ω1 and merge edge 

ll not affect other vertices. Under such 

ere µ ∈ V(G), ν∈  V(G) and neither µ 

hortest distance between vertex µ and 

dge (µ,ν), then edge(µ,ν)is a shortcut 

distance d(µ,ν) in G is defined as the 

 For the undirected, unweighted graph, 

links between µ and ν, which can be 
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obtained from the level of one node in the breadth first search tree rooted at 

another node.  

6) Subgraph S(G):  Let S be a graph S(V′, E′),  if  V′ (S) ⊆  V(G) and E′ (S) ⊆  E(G), 

then S(V′, E′) is called a subgraph of G(V,E).   

7) Subgraph neighborhood  Γ(S): Let S be a subgraph of G, the neighborhood Γ(S) 

in G is the subgraph that consists of all vertices adjacent to any of the vertices in 

S, but not including any vertex of S. Γ(S) maintains all links connecting among 

these vertices in the original graph G. 

8) ith Neighborhood  of vertex Γ i(ν): Let the 1st neighborhood Γ1(ν) of a vertex 

ν∈ V(G)  be the subgraph of G which consists of the vertices adjacent to ν (not 

including ν itself). Then the ith neighborhood Γi(ν) of a vertex ν∈ V(G)  is 

defined as : 

Γi(ν) = Γ( Γi-1(ν)) + Γi-1(ν)  (  i > 1)  

In an unweighted and undirected graph, Γi(ν) can be viewed as the subgraph S(V′, 

E′) where V′ (S) = { µ | µ ∈ V(G), µ ≠ ν, and distance d(µ, ν) ≤ i} . 

9) Cut node: For a vertex ν ∈ V (G), let S be the set of vertices that adjacent to ν, i.e. 

S = Γ1(ν). If the total vertices in S is larger than 4, and there exist at least 2 pairs 

of nodes in S (µ,ω), (µ′,ω′) such that d(µ,ω) and d(µ′,ω′) is larger than r (r >2) at 

the absence of ν and its corresponding edges in G, then µ is called a cut node of   

graph G(V, E) at level r.    

 

 

 



 

 

  

 

 

 

Figure 2. 2  Shortcut (

 
In fact, if an edge (

cut nodes of G at l

According to

adjacent nodes. 

d(µ, ω1) and d

→ω1→ν, µ →ω

as shown in Fig

shortcut at level 

10) Clustering Coeffici

neighborhood Γ i(

fraction of these po

γi(ν).  More precise

ν 

ω1 

µ
α 
6 

µµµµ ,νννν )  at r implies that node µµµµ and νννν  are cut nodes at level > r-1 

µ,ν) is a shortcut at level r of G and r ≥2, then both µ and ν are 

evel > r-1. This can be proved as following:  

 the definition of shortcuts, both µ and ν have at least three 

 Let assume ω1 and ω2 be the adjacent nodes of ν, then 

(µ ,ω2) must be larger than (r-1). Otherwise the path µ 

2→ν will make d(µ ,ν ) ≤ r in the absence of edge (µ ,ν ), 

ure 2.2, and  contradict with the premise that (µ ,ν ) is a 

r. 

ent γi(ν) and γi(G): Let Kv  be the number of vertices in ν’s ith 

ν). Then at most 





2

Kv
 edges can exist between them. The 

ssible edges that actually exist is called clustering coefficient 

ly, 
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2
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i
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Where |))((| vE iΓ  is the number of edges in Γi(v), and 





2

Kv
is the total number 

of possible edges in Γi(v).    

The clustering coefficient γi(G) of graph G refers to the number averaged over all 

ν ∈ V(G), i.e. 
|)(|

)(
)( )(

GV

v
G GVv

i

i
∑

∈=
γ

γ   Thus, )(1 Gγ  = 1 for a connected graph would 

imply G is a complete connected graph, where every vertex ν ∈ V(G) is connected 

with other vertices. Ideally clustering coefficient would represent the local 

“neighboring” linkage information, i.e. how likely two people with a common 

friend would know each other in a social network.  Higher  γi(G) value implies 

that such probability is larger. Considering this, when we calculate the clustering 

coefficient of overall graph γi(G), we normally don’t count those leaf nodes with 

single connections.  

11) Characteristic Path length L(G): Let d(µ,ν) be the shortest distance between 

vertex µ and ν, the characteristic path length of graph L(G) is defined as the 

average over all pairs of vertices, i.e. 







=

∑
≠∈

2
||

),(
)( ),(,

V

d
GL vGV µνµ

νµ
  

2.2 Small World Phenomenon 

When a network involves thousands of nodes and connections between them, the 

whole system structure becomes very complex. Three different models have been 

proposed to study these complex networks:  
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1) Random network. This classical theory is first introduced by Erdös & Renyi5.  It 

assumes that each node chooses another to make a connection randomly with 

probability p. Thus, the whole network is statistically homogeneous such that 

most of the nodes have the same number of links, implying that the probability of 

finding a node with link number > k decays exponentially (P(#of links > k ) =  e-

k). 

2) Regular network. The connection topology is regular if each node is connected 

only to its immediate neighbors in a regular lattice.     

3) “Small World” network. Many networks in the real world lies somewhere 

between the above two extremes. Watts and Strogatz6 have demonstrated that if a 

regular lattice is “rewired” by introducing certain degree of disorder, at some 

point, the network will keep the highly clustered structure like regular graph, 

while the minimum distance between any two randomly chosen nodes has been 

shortened to that of a random graph. The name of “small world” is given to such 

a highly clustered network with small global separation since it is very similar to 

our life experience of running into a complete stranger at a party and finding 

mutual friends after a short conversation. This is known as “six degrees of 

separation”.   

So far, studies show that several man-made or real world networks exhibit this small 

world phenomenon, including the World Wide Web7, the power grid of the western 

states, the collaboration graph of actors and the neuron network of C. elegans2,8 etc.  

Actually, one good example of small world topology can be seen from the “Kevin 
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Bacon” game, in which it is very difficult to find any actor whose degree of separation 

from Kevin Bacon (KB) is greater than 4 if we define one separation as direct 

collaboration with KB, second separation as collaboration with  one of KB’s direct 

collaborators, and so on.  

This small world topology will strongly affect the dynamics properties of the 

network. Watt and Strogatz have demonstrated theoretically that a small faction of the 

random links added to a regular lattice graph will speed up the propagation of a disease 

across the whole graph. This suggests that a few people traveling from place to place, or 

from one social community to another, might be enough to trigger a full-blown epidemic. 

On the other hand, such a small world topology can also be used in a positive way. For 

example, Adamic9 demonstrated that the pages corresponding to a particular search query 

are more likely than not to form a small world network. Therefore, a “smart” search 

engine that presents just the center of each “cluster” instead of lists of many sequential 

entries from the same sites and sorts these centers according to the sizes of “clusters” will 

give the user a brief and expandable search results.    

Before Watt and Strogatz’s formal mathematical modeling and proposal of this 

“small world” phenomenon, people often divided complex networks into to two major 

classes according to the connectivity distribution P(k), which is the probability that a 

node is connected with k other nodes in such a network. Two kinds of distribution exist 

in complex networks:  

1) Homogeneous networks, in which P(k) follows the Poisson distribution and each 

node has approximately the same number of connections, k ≈ <k>, where <k> is 
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the statistical average of link numbers.  Thus, the probability to find a highly 

connected node decays exponentially, i.e. P(k) ~ e-k for ( k >> <k>). Erdös’s 

random graph is such a case. 

2) Heterogeneous networks, is also referred as scale-free networks, for which P(k) 

decays under a power law, i.e. P(k) ~ k-γ. Under such distribution, some highly 

connected nodes are statistically significant rather than being prohibited in 

homogeneous network. Some examples include WWW and the internet, with 

observed γ between 2 ~3. 10  One important consequence of such network is the 

high degree of tolerance against errors and vulnerability towards attack. 

In our opinion, scale-free network is a special case of “small world” instead of an 

exclusive category outside, since “small world” should be interpreted in a very broad 

sense as denoting those network topologies with locally dense areas connected with some 

“long jumps” to reach the outside world. In the following discussion, we will see a 

network displaying both power law properties and “small worldness”. 

2.3 Source Data   

In this thesis, we mainly study two network structures. The first one we used involves 

1,825 individual proteins and the 2238 links that are defined as the identified physical 

interactions between proteins. These interaction data are derived from several combined 

and non-overlapping sources such as the databases of MIPS11, DIP12, and systematical 

two-hybrid analyses13 14. These combined interaction data are also downloadable at 

http://depts.washington.edu/sfields/yplm/data/NB_data.html. We will refer to this pure 

interaction network as PID(physical interaction database) in our following discussion. 
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However, PID is not a connected graph. Through Breadth First Search, this network was 

found to consist of 186 individual components. The largest connected component has 

total 1297 proteins and 1862 interactions between members. The second largest 

connected component has 11 proteins, and the 95% of the other components have only 

two proteins. We denote the largest connected component as CID.  

In the second network studied, we define a link between two proteins as not only a 

physical interaction, but also a sequence similarity (homologies or orthologies). We 

retrieved such data from the YPD  and obtained total 24,647 distinct links between 6,108 

proteins from the January, 2001 version. Similar to PID, this original similar-sequence-

and-interaction protein linkage graph (referred as SID) is also unconnected and consists 

of 280 individual components by performing Breadth First Search. The largest connected 

component has total 3725 vertices and 23,986 edges in it.  All other component are quite 

trivial with only 2~10 vertices each. The largest connected component is singled out in 

our study and abbreviated as CSD.  

2.4 Results and Discussion 

During our study, we make the following assumption for both networks: 

1. All nodes (representing each yeast protein) are treated as identical, featureless 

vertices.  

2. All interactions / relationships are assumed to be bi-directional; hence the 

resulting graphs are undirected. 

3. All interactions are assumed to be identical, ignoring the fact that some of the 

interactions might be much closer than others. Thus, we get unweighted graphs.   
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2.4.1 CSD Network 

For an unweighted and undirected graph, the characteristic path length can be 

obtained by performing a breadth first search rooted at every possible node and averaging 

over all the paths. The resulting L(G) of 4.974 is short, comparing to the magnitude of the 

number of vertices involved and the diameter of 16. The histogram of the shortest 

distance between two nodes d(i, j), shown in Figure 2.3, indicates that more than 50% of 

the d(i, j)s fall into the category of 4~5. This is not a surprising fact if we consider the 

requirements in the biological world that each protein must communicate/interact with 

others effectively to accomplish certain function and adapt to the changes of 

environment. 

 CSD Graph
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Figure 2. 3 Histogram of the shortest distance between every possible pair of nodes d(i, j) in CSD 
graph 
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On the other hand, the local area around most of the vertices in CSD graph is very 

dense, as indicated by their clustering coefficient. Figure 2.4 is the clustering coefficient 

γi(ν) (where i = 1) histogram for this CSD graph. It shows that about 17% of the vertices 

have γi(ν) =1.0, which means all neighbors of vertex ν are also connected with each 

other.  The whole graph clustering coefficient average over all vertices equals to 0.590. 

Leaf nodes are not counted when computing γi(G) (i =1).     

Clustering Coefficient Histogram
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Figure 2. 4 Clustering Coefficient Distribution of CSD Graph  (level i =1) 

With the short characteristic path length L(G) and high local density γ(G) , this CSD 

graph possesses the so-called “small world” connectivity. In this “small world”, most of 

the nodes have their own highly clustered local areas so that each can reach all other 

nodes in the same local area within 1~2 local edges through multiple paths. In order to 

connect one cluster to another to achieve shorter path length between any two nodes in 
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the graph, some “global” edges (shortcuts) are required.  Therefore, shortcuts play a very 

import role in the global connection.  

As shown in Figure 2.5, the probability P(k) that a given yeast protein interacts with k 

other yeast proteins follows a power law.  P(k)  is computed as the percentage of vertices 

with k links over |V|. Previous study shows that this power-law topology is also shared by 

the protein-protein interaction network of the bacterium Helicobacter Pylor15. 

 One characteristic of the power law network is that it is a highly nonhomogeneous 

scale-free network in which a few highly connected proteins play a central role in 

mediating connections among numerous, less connected proteins. This can be 

demonstrated by the fact that many highly connected proteins are either involved in 

“shortcut” or cut nodes, which will be discussed in the next chapter.   
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Figure 2. 5 Connectivity distribution  P(k) in CSD graph. 

P(k)  = the probability that a node has k links. 
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2.4.2 CID Network 

For the CID network, the connection is much more sparse than CSD with degree k 

~2.86 and half of the vertices out of 1,267 dominated with less or equal than 2 links.  By 

making similar path length and clustering analysis, we obtain a characteristic path length 

L(G) of 7.63 and a much lower clustering coefficient )(1 Gγ  of 0.217, comparing to 0.59 

in CSD. This )(1 Gγ  of 0.217 is still much higher than that of 0.08 in a random graph 

with same number of vertex and edges. It should be kept in mind that we don’t count 

those single nodes in the calculation of )(1 Gγ . Therefore, )(1 Gγ should be a reasonable 

indication of the connectedness inside a “close neighboring” clique if one exists.  In 

addition, our further calculation towards “neighbor’s neighbor”, i.e. )(2 Gγ , leads to a 

higher value of 0.312 than )(1 Gγ  of 0.217. Such tendency is also indicated in the 

histogram of )(1 Gγ  and )(2 Gγ  in Figure 2.6, with more nodes displaying some degree 

of clustering instead of complete separation. Such a tendency is unlikely to happen in a 

random, homogenous network. We will postpone our explanation until next section when 

we compare the graphical structure difference between CSD and CID network. The point 

we want to make here is that the CID network is more likely to be a “small world” rather 

than a random graph even though its clustering properties is not as obvious as CSD graph 

and some verified cases.  

Figure 2.7 is the plot of probability P(k) versus number of links k in CID graph. The 

straight line under logarithms coordinate indicates that CID graph is a scale-free network. 

This may further distinguishes this CID graph from a random graph.  
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Clustering Coefficient Histogram
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Figure 2. 6 Clustering Coefficient Distribution of CID Graph. 
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Figure 2. 7 Connectivity distribution  P(k) in CID graph. 

P(k)  = the probability that a node has k links. 
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2.4.3 Comparison between CSD and CID  

The basic parameters for both CID and CSD graph are summarized in Table 2.1. 

Even though the total node number in CID network is only 1/3 that of the CSD 

network, both the path length and diameter are higher than those of CSD network. If we 

denote Φ as the percentage of shortcut(r) over all the edges in graph, as shown in Table 

2.1 and Figure 2.9, Φ in CSD is much lower than those in CID graph with similar 

decaying tendency. (The detail of how to calculate shortcut is covered in the next 

chapter). At first glance, the larger percent of shortcut presented in CID with fewer nodes 

than CSD should result in a shorter overall path length since shortcut plays an important 

role in contracting the path length between nodes in different clusters and decreasing 

characteristic path length of graph. This conjecture contradicts the real results. Our 

explanation is that the clusters of CID have a much smaller size than those of CSD, 

causing the total cluster number comparable to CSD. On the other hand, CID has much 

looser cluster structure and thus longer path length inside a cluster than CSD. As 

mentioned earlier, CID graph is much sparser than CSD in the sense of both lower degree 

of connection and lower clustering coefficient. However, the plot of γ at different 

neighboring level between 1 and 5, as illustrated in Figure 2.8, indicates that the there is a 

peak in the CID plot at level 2 instead of 1, which indicate that the nodes in CID is more 

likely to connect with its neighbor’s neighbor rather than make a triangular link as in 

CSD graph. In addition, there exist a significant number of cut nodes in the CSD graph. 
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In our graph coarsening process covered in Chapter 3, we will show that the existence of 

these cut nodes will make the path length shorter even without shortcut.  

Table 2. 1 CID and CSD Graph Basic Parameters 

Parameter CSD CID  

Total # of vertices |V| 3,725 1,297 

Total # of edges  |E| 23,986 1,862 

Degree k 12.88 2.86 

Average Clustering Coefficient 0.590 0.217 

Diameter D(G) 16 23 

Characteristic Path Length L(G) 4.974 7.627  

Percentage of shortcut Φ (level =2) 0.0374 0.4557 
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Figure 2. 8 Clustering coefficient at different level in CSD and CID graph. 
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Overall, we think both CID and CSD are some kinds of “small worlds” with very 

different structures. If we put CID and CSD between two extremes of random graph and 

regular graph, CID is much closer to a random graph while CSD inclines towards a 

regular graph.  
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Figure 2. 9 Shortcut percentage at different level in CSD and CID graph. 
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Chapter 3  

Clustering, Graph Coarsening and Drawing 

Traditionally, proteins are studied and characterized individually based on their 

associated interactions, biochemical functions, genetic properties etc. However, recent 

studies show that a global view of the proteins interaction network may reveal more 

unidentified information such as the relationship between lethality of a protein and its 

centrality in the protein interaction networks16. A graphical layout for such network 

would be very helpful to get hidden information from it intuitively. Therefore, one 

objective in this thesis is to display the overall structure of our CID/CSD graph and 

obtain a global view of this network. 

In graph visualization, one key issue is the size of the graph to be viewed. The 

number of nodes in the graph to be displayed is limited not only by the viewing platform, 

but also by the discernability of the viewer. In general, displaying an entire large graph 

might bring the viewer some sense of the overall structure of the graph or a node’s 

environment within the graph, but makes it difficult to discern the details. According to a 

recent graph drawing competition, the number of nodes in a classical graph that can be 

best displayed on current visualization systems is limited to a few hundreds17.  However, 

information visualization applications in the biological world such as our CID/CSD graph 

are typically associated with thousands or even millions of nodes. In order to reduce the 

visualization complexity, many “abstraction” and “reduction” methods have been 

proposed by researchers. One common approach is through clustering.   
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3.1 Objective of the Graph Coarsening 

Clustering is also called cluster analysis, grouping or classification. Basically, 

clustering is the process of discovering the groups or classes among many elements based 

on certain criteria (or semantics in some literature). It has application in biology, 

economics, psychology and many other fields. In the context of graph visualization, 

clustering can be utilized to group related nodes into “super nodes” so that the overall 

visualization complexity decreases by restricting our view to those “super nodes”. The 

whole procedure can be looked as the coarsening process to build a smaller and simpler 

layout version from a more complex and larger graph while maintaining the “backbone” 

structure.   

However, “backbone” is only vaguely defined. To evaluate the performance of 

clustering, there exist many criteria such as minimizing the cross edges between members 

in different clusters, keeping the total weight in each cluster nearly same. In this thesis, 

our objective is to view a simpler “backbone” structure of the graph while keeping the 

local information inside each cluster available. Thus, the goal of our clustering algorithms 

is to group nodes in CID/CSD graph into disjoint subsets, called “super nodse”, such that 

two criteria are satisfied: 

1) Homogeneity: nodes in the same “super node” are closely related with each 

other, in other words, the clustering coefficient inside a “super node” is high; 

2) Separation: nodes in different “super nodes” have little connection in the 

original CID/CSD graph.   

In Chapter 2, the network properties of CID/CSD graphs have been studied. The 

results show that they both have very low characteristic path lengths comparable to that 
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of random graphs with similar vertex size and average link numbers. However the 

clustering coefficients are much higher than what we would expect for a random graph. 

This implies that our CID/CSD graph is a “small-world”.  In the case of CSD, with a low 

average edge number of 13 and total vertex number of 3725, the high clustering 

coefficient(~ 0.59 ) is ascribed mostly to the locally highly connected spot rather than the 

global clustering properties. To be more specific, inside this protein connection network, 

there are many densely connected clusters, linked together by shortcuts to achieve low 

characteristic path length.  This is quite similar to our everyday social network. Most of 

us live in a specific social life cycle, and people inside this cycle are familiar (linked) 

with each other. However, most of the people don’t have too many connections with 

outside cycles. It is some “important” peoples’ friendships (connections) that bring the 

different cycles connected so that we can get the so-called “six degree separation”. These 

important persons (shortcuts) would be critical to the overall network structure and be 

part of the backbone of the network.   

Based on the above observation, it would be feasible to utilize these shortcuts within 

the graph and discover the naturally occurring clusters since the percentage of shortcut is 

really small inside a “small world”, comparing to the cases that every edge might be 

shortcut inside a random graph and no shortcut exists in a regular graph. Therefore, we 

can further detail our graph coarsening problem as following.   

Given a complex connected graph G(V, E), we want to build another connected graph 

G′(V′, E′) which G′(V′, E′) satisfies the following requirements:   
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1) Each ν∈ V(G) has a corresponding ν′  in V′(G), i.e. ν⇔ν′ , in the sense that ν′  can 

be regarded as a subgraph of G and being represented as a “super node” in G′. 

This relationship is many-to-one. 

2) For every edge (µ, ν) ∈ E(G), if ν⇔ν′ ,  µ⇔µ′  and µ≠ν, then edge ( µ′,ν′) should 

also exist in G′.  

3) If two nodes of G belong to the same “super nodes” in G′, they should have a very 

close link. To be more specific, if ν∈ V(G) , ω∈ V(G) , ν⇔ν′ ,  ω⇔ν′, ν′  ∈ V′(G), 

and edge (ν, ω)∈ E(G),  there should exist at least another path from ν to ω with 

length less than r through some nodes in the corresponding subgraph of ν′  in the 

absence of edge(ν, ω) . r depends on how far we want to coarsen the graph. 

Larger r implies a simpler G′ but not guaranteed.   

4) For every edge(µ′,ν′)∈ E′(G′),  if ν⇔ν′ ,  µ⇔µ′  and (µ, ν) ∈ E(G), then either edge 

(µ, ν) is a shortcut at level of r,  or µ and/or ν are cut nodes in G. 

5) The edge number inside the G′ should be minimized.   

Requirements 1 and 2 will maintain the overall structure and connectedness 

properties of the original graph. Requirement 3) keeps the nodes inside a natural clusters 

more likely to be included in the same “super node”.   While the 2nd requirment makes a 

clear relationship between edges of the two graphs, the 4th one implies that all the edges 

in G′ exist because they are critical in connecting the original graph G such that their 

absence will make the distance between nodes belonging to different “super node” larger.  

Requirement 5 will reduce the display complexity of the resulting graph G′.   
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The general objective of our graph coarsening is to group “clustered” vertices 

together and reduce the number of vertices presented in graph visualization. In our 

algorithm, we utilized the distribution of shortcuts in G to identify those clusters.  The 

clusters in G are defined as following: 

Let G be the original graph, and G1 be the graph obtained by removing all the 

shortcuts endpoints and cut nodes. Then each connected components in G1 is called a 

cluster in G.  

 Obviously, these clusters would satisfy our requirement 3) and denote  “super nodes” 

in our coarsened graph. The “super nodes” combined with part of those shortcuts 

endpoints and cut nodes consistute our coarsened graph. Details can be found in the later 

section. Using this algorithm, coarsened graphs of CID/CSD have been built and the 

graph layouts are displayed using force-directed method. A java program has been 

implemented to provide the user with a graphical view of the CID/CSD graph at both 

local and global level.  

The whole graph coarsening process can be divided into four phases: 

1) Shortcut and cut node discovery; 

2) Clustering; 

3) Graph coarsening .  

4) Graph drawing; 
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3.2 Clustering, Graph Coarsening and Drawing 

3.2.1 Shortcut and Cut Node Discovery 

Shortcut and cut nodes are defined in Chapter 2. The most important feature of them 

is that their absence will cause a longer path length among their neighbors.  The problem 

to find out whether an edge(µ, ν) ∈ E(G) is  a shortcut(r) of G is similar to the question 

that if  µ can be reach ν within r  links without edge(µ, ν). (We only consider undirected 

and unweighted graph). This can be solved by a depth-limited search (DLS) with a little 

modification.  

 

 

 

 

 

Figure 3. 1 µµµµ is a cut node and connects the left and right group of nodes. 

In the case of cut node analysis, those nodes with less than 4 links in G can be filtered 

out. The reason behind this strict “at least 4 links” gives credit to our objective of finding 

those critical nodes that either connects members between 2 larger groups or contributes 

to the overall graph connection. As shown in Figure 3.1, obviously, node µ plays a more 

important role than ν to bridge the left and right side. Similarly, cut nodes could be found 

by modified DLS with preprocess of finding neighbors. The pseudo codes of our 

algorithms are presented as following: 

ν 

ω2 

ω1 

µ
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Algorithms:  
//Function isShortcut(u,v,r) will decide if edge(u,v) is a shortcut at level r.  

isShortcut(u, v, r) {    
 if ( u or v is leaf node or minor node) 

  return false; 

 push u into stack S; 

  found = false; 

 visit[u] = true; 

 depth[u] = 0; 

  if ( ! found && S is not empty){ 

            w = S.pop(); 

     if ( w = v ) found = true; 

     if ( depth[w] < (r-1)){ 

  for each vertex z that adjacent to w{ 

  //modification of DLS to avoid edge (u,v) on the path 

      if ( !visit[z] &&  (z != v || (z = = v && depth[w] !=0) ) ){ 

   S.push(z); 

   depth[z] = depth[w]+1; 

}}}}   

 return found; 

} 

//Function isCutNode(v,r) will decide if node v is a shortcut at level r. 

isCutNode(v, r) {  

let L be the list of nodes adjacent with node v;  
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  if (size of L is less than 4) return false; 

count = 0; 

test = false; 

 for all the pairs (u,w) in list L { 

if ( isReachable(u,w,v,r)) count++; 

if (count > = 2) return true;} 

return test; 

}   

 

//Function isReachable(u,w,v,r) will decide if node u can reach w within r links 

without using any links incident on v..  

isReachable(u, w, v, r) {  

  push u into stack S; 

  Found = false; 

 visit[u] = true; 

 depth[u] = 0; 

  if ( ! Found && S is not empty){ 

            w1 = S.pop(); 

     if ( w1 = w ) Found = true; 

     if ( depth[w1] < (r-1)){ 

  for each vertex z that adjacent to w1{ 

  //modification of DLS to avoid node v on the path 

      if ( !visit[z] &&  z != v ){ 
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   S.push(z); 

   depth[z] = depth[w]+1; 

            }}}}   

 return Found; 

}  

Analysis: 
In the worst case, the time complexity of DLS is O(bl) and space complexity is O(b*l) 

where b is the branching factor of the search tree and l is the depth limit. However, 

branching factor b is not uniform for the search tree. On the average, degree of links k 

can approximately estimate the value of b, and the depth limit l equals to the shortcut 

level r. Thus, the time complexity of to find all the shortcut in graph G equals to 

Ο(|E|*kr).    

To decide if a node ν is cut node or not, we perform DSL on each possible node pair 

combination from ν‘s neighborhood. Under the worst situation, this DSL has to be 

performed N*(N-1)/2 times, where N is the size of ν’s adjacent list and can be estimated 

from degree of links k. Therefore, the total complexity should be expected as 

Ο(|V|*k(r+2)). But the real case problem should have a much lower complexity that 

benefits from the preprocessing of “larger than 4 links” and the stop condition at “count = 

2”.   

Overall the first phase complexity is Ο(|E|* kr + |V|*k(r+2)).) = Ο( (|E|+ |V|*k2)* kr). 
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3.2.2 Clustering   

Algorithms:  
The nodes involved in the shortcuts and cut nodes can be regarded as the “seeds” in 

our clustering process. First, each “future” cluster (not generated yet) is associated with 

an index sid and two list called member[sid] and group[sid], where member[sid] stores 

all the “seeds” presented  in this cluster, and group keeps track of all nodes put into this 

cluster. The whole graph information is stored in array member[] and group[], with sid as 

the index to this array. The largest sid is the cluster number in our graph. A non-seed 

node can only be associated with one group , while “seed” can be present in several 

group.  The information of sid that each “seed” node is belongs to is kept in a 3rd list 

called SEED[id], where id is the index which refers to a specific “seed” in G. List 

SEED[id] will be used during our later t connection stage.   

To group related node into a cluster, each non-seed node traverse the graph by 

Breadth First Search (BFS) and stop further branching at each “seed”, i.e. not pushing 

it’s adjacent nodes in the queue. One exception is that its adjacent node is either leaf node 

or minor node.   

For a node ν, if all of its adjacent nodes are “seed” nodes, then ν will not be grouped 

into any clusters by the above clustering process.  Thus, special consideration should be 

given to this case. The following pseudo code gives detail information: 

Analysis: 
Using the above algorithms, the resulting clusters has the following properties: 

1) For vertex µ ∈ V(G),  ν∈ V(G), if  µ, ν belongs to different clusters and µ, ν is not 

the seed node, then there doesn’t exist such an edge (µ, ν) in G, i.e. (µ, ν) ∉ E(G). 
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In another word, all the links related to non-seed members is limited in this 

cluster, which will largely decrease the cross links between “super node” in the 

coarsened graph.    

2) For vertex µ ∈ V(G),  ν  ∈ V(G), if  µ, ν belongs to same clusters, edge (µ, ν) 

∈ E(G) and µ, ν is not minor node , a leaf node  or “seed ” node, then there must 

exist an alternative path from µ to ν with length < r without edge (µ, ν) and must 

pass through at least one other member than µ, ν in the same clusters 

 

Clustering (Graph G) { //the edges in G is represented by a adjacent list  

      for each vertex v ∈  V(G){ 

identified[v] = false;  

sid = 0;  //sid is the vertex representation of the cluster    

for(each vertex v ∈  V(G){   

if ( (  ! identified[v] && v is not a “seed” node ){   

put v into Queue Q, Q.Enqueue(v);  

visit[v] = true;  

while ( Q is not empty ){ 

vertex w = Q.Dequeue();  

if( ! w is not a “seed” node ){ 

put w into member[sid];  

identified[w] = true;  

for (each vertex u which is adjacent to w in G )  {   

if (!visit[u] ){  
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Q.Enqueue(u); 

visit[u] = true; 

} }}     //end if  

else{ 

put w into List group[sid];  

put sid into SEED[w];  

for (each vertex u which is adajacent to w in G ) {   

if (!visit[u] && u is a leaf node ){  

Q.Enqueue(u);  visit[u] = true;   

 } } }      //end else 

}}                                        //end if  

sid ++;    } 

//process “seed” node without any “non seed” neighbors. 

for each node u in graph G{ 

   if ( ! idenfied [u] ){  

put sid into SEED[u]; 

put nodes u into member[sid] and set identified[u] = true; 

sid++;} 

} 

} 
  

According to our cluster definition, this process is essentially equivalent to 

identifying all those connected components inside G1, which is derived from the original 

graph with all shortcut endpoints and cut nodes deleted. Each non “seed” node in the 



 

cluster will be traversed exactly once, while “seed” node might be visited several times 

which depends on the number of clusters it associated with.  However, since no edge 

would be traversed more than once in this algorithms, this time complexity is much less 

than O(|E|). 

3.2.3 Shortcut Connection 

Algorithms:  
Once we group related nodes into clusters, the next step is how to connect the 

otherwise disconnected graph built with shortcuts only and satisfy the 2nd requirement in 

our objective.  In our algorithms, we introduce “super node” and “super edge”. Basically, 

we merge all the non“seed” nodes inside a cluster into a “super node”, and link two 

clusters based on their associated “seed” nodes. For those “seed” nodes associated with 

more than 1 clusters, i.e, size of SEED[id] > 2, it would be favorable  to introduce a new 

single “super node” instead of make many connection between involved clusters, as 

illustrated in Figure 3.2. We call those links introduced owing to this reason as pseudo 

shortcut, shown as dashed link in Figure 3.2 . 
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The following is the detailed description:   

// Connection() function will return a coarsened  graph G′   

Connection(){  

for each “seed” node u in G{ 

if (size of SEED[u] > 2){ 

for each element x in SEED[u]{ 

 //introduce pseudo shortcut; 

 add edge(x, sid) into G′  ; } 

 empty SEED[u] and then add sid into SEED[u]; 

 put u into member[sid] and group[sid];} 

 sid++;  

}}  

for (each shortcut (u,v) in G ){  

for each member x in SEED[u]{ 

for each member y in SEED[v]{  

 add edge(x,y) into G′   if not exist; 

}}} 

}    

 

Analysis: 
By now, the skeleton of our coarsened graph has been achieved. Compared to the 

original graph G, this coarsened graph consists of vertices from two categories: 1) “super 

node” representing a cluster, i.e., individual connected component inside G1 (G1 is 

derived from G with all shortcut endpoints and cut nodes deleted).  2) Cut nodes and part 
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of shortcut endpoints.  Let G2 be the graph derived from original graph G with all 

shortcuts deleted and shortcut endpoints preserved. We define n as the number of clusters 

that can be reached from shortcut endpoint µ in G2 with a single link.  If n = 0 or n >1, 

then µ would be shown in coarsened graph. If n =1, then µ will be hidden in the 

associated “super node”.   Obviously, all the edges in the coarsened graph correspond to 

either the shortcuts in G or pseudo-shortcuts introduced in our algorithms.  

The major task of this Connection() is to go through all edges in G and find the 

corresponding links in G′ based on our criteria of requirment 2. Therefore, time 

complexity is O(|E|). 

3.2.4 Graph Drawing: 

Given a graph with a set of nodes and edges, graph drawing problem deals with the 

calculation of position of the nodes and the curve to be drawn from each edge so that a 

pleasing drawing of the graph could be provided.  Among various graph drawing 

techniques, Force-Directed Method, also called Spring Layout algorithms, has been used 

successfully to produce well-balanced layout for undirected connected graph. In this 

algorithms, nodes of a graph are modeled as charged particles which impose repulsive 

forces on one another, and the edges of the graph are viewed as springs causing attractive 

forces between adjacent nodes of the graph. The algorithm was first proposed by Eades18. 

After that, many different physical models has been introduced to improve this 

algorithms. In this thesis, we design our own graph drawing code based on Kamada and 

Kawai’s model(KK)19. Each node in KK’s model is viewed as particles connected by 

springs whose ideal lengths li,j  equals to the graph-theoretic distances d(i,j) between their 

two end-point particles multiplied by the desirable length of one edge we want to display 
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in our layout. The goal of this KK model is to find a spring system with balanced energy 

E where E is defined by 
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where ki,j  denotes the strength of the spring between these two vertices and ri,j  denotes 

the real distance between vertices i, and j in the layout.    

In the coarsened graph, there are basically two types of links: shortcut and pseudo-

shortcut. In the original graph, clusters linked to same nodes through pseudo-shortcut 

should be very close to each other, i.e. they share at least one common “seed” node. 

Thus, we define the desirable length of a single shortcut 4 times of that of one pseudo-

shortcut when computing d(i,j) to reflect this difference.  

Based on the above algorithms, we implemented a java program which take a input 

graph like the CID or CSD in text format, compute and display a coarsening graph based 

on the above clustering, coarsening, and drawing methods. Some major function in this 

program includes: 

1) Computing the coarsening graph G′ at different level r ; 

2) Display G′; 

3) Display the local connection insider each “super node”(cluster),  i.e., the 

corresponding subgraph of G.   

4) Display the member information of the “super node ”, such as the corresponding 

protein name in our CID or CSD network. 
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3.3 Results and Discussion 

3.3.1 Comparison between CID and CSD graph 

Table 3. 1 Summary of parameters in coarsened graph of CSD and CID 

Graph Original 

graph 

Shortcut Cut 

node 

Shortcut only Shortcut & Cut Node 

CSD |V| = 

3,725; 

|E| = 

23,986 

660 1021 |V| = 241 

|E| = 361 

cluster  =133 

largest cluster size = 3056 

|V| = 1032 

|E| = 3872 

cluster = 420 

largest cluster size =886 

CID |V| = 

1,297 

|E| = 

1,862 

436 11 |V| = 297 

|E| = 482 

cluster  =159 

largest cluster size =68 

|V| = 338 

|E| = 562 

cluster  =182 

largest cluster size = 64 

 

At the beginning of this study, the above algorithm was designed as to start 

coarsening based on those shortcuts only (using only shortcut endpoints as our “seed” 

node). It works fine with CID graph.  However, when it comes to the CSD graph, 3,056 

out of 3,725 vertices inside CSD will be grouped into a single cluster under level r = 4.  

The total number of clusters generated is 133 linked through 361 edges, among which 97 

clusters’ sizes fall into the range of 2-10. The result implies CSD is a highly clustered 

graph. Further study of CSD shows that there exist a significant number of cut nodes, 

which are not involved in any shortcut connection. Obviously, ignoring the existence of 

these cut nodes cause the whole graph collapse into a jumbo cluster with tiny ones 
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surrounding it.  Therefore, we modified our algorithms by bring those ignored cut nodes 

into our “seed” node consideration. At this time, total 420 clusters has been identified and 

the largest “clump” collapses into smaller pieces even though the size is still as large as 

886. We believe that this largest cluster is inherent inside this CSD network. Surprisingly, 

nearly 1/6 of the vertices inside CSD falls into the cut node category. Table 3.1 lists some 

basic results of this algorithm. In this table, “shortcut only” refers to the results obtained 

if we only consider those shortcut to set up “seed” node and “shortcut & cut node” 

denotes the result using algorithms presented above. This table implies that the 

consideration of cut node have little effect on the clustering of CID while inducing 

significant change to the results of CSD.  

 
 

Figure 3. 3 Typical cluster structure of CID network. The red dots denote the non seed node while 
blue circles refer to the seed node. All the links of non seed node in original graph are presented. The 
seed node only shows those links inside this cluster. Each dot represent a protein, whose name can be 
displayed by double click on that dots.  
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Figure 3. 4 Typical cluster structure of CSD network. The red dots denote the non seed node while 
blue dots refer to the seed node. All the links of non seed node in original graph are presented. 
The seed node only shows those links inside this cluster. Each dot represent a protein, whose 
name can be displayed by double click on that dots.  
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Figure 3.5 and Figure 3.6 illustrate the layout of the coarsened graph (at level r =4) of 

CID and CSD respectively. For CSD, the amount of edges is too large to be displayed 

even after coarsening, thus we hidden the edges to decrease the layout complexity.  Some 

of their typical clustering structures are shown in Figure 3.3, and Figure 3.4 respectively.  

Several things can be pointed out from these pictures.  First, it is obvious that CSD 

network has a much more dense topological structure at both local area of a cluster if it 

exists, and the overall structure. That might be one of the reasons that account for a lower 

characteristic path length of CSD than CID even the former has more vertices involved. 

Secondly, the size distribution of most clusters is well balanced among the whole graph if 

we ignore that only “jumbo” cluster presented in CSD.  Third, comparing to the layout of 

same network without any coarsening, as presented in Uetz ‘s paper20, our coarsened CID 

network layout works relatively well to display the overall structure of a network with 

thousands of nodes.    
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Figure 3. 5 The layout of coarsened graph of CID network. Red dots refer to the real clusters, blue circles denote the shortcut endpoints with n=0, and 
green diamonds represent those cut nodes and shortcut endpoints with n >1. The size of each dot denotes number of nodes associated with this cluster. 
The larger the size, the more nodes the cluster has. Green line (light color line) indicates that this link is “pseudo-shortcut”.  Press button “ continue” 
may give a better view of the graph. Click on “shortcut only” will only display those shortcuts. Index of each cluster will be displayed in the Textfield 
beside label “Cluster” by double click those vertices. Press button “member” will display the subgraph corresponding to this cluster. Click on “local 
info” will only display this cluster’s links on the coarsened graph.   
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Figure 3. 6 The layout of coarsened graph  of CSD network.  Red dots refer to the real clusters, blue circles denote the shortcut endpoints with n=0, and 
green diamonds represent those cut nodes and shortcut endpoints with n >1. The size of each dot denotes number of nodes associated with this cluster. 
The larger the size, the more nodes the cluster has. Press button “ continue” may give a better view of the graph. Click on “shortcut only” will only 
display those shortcuts. Index of each cluster will be displayed in the Textfield beside label “Cluster” by double click those dot. Press button “member” 
will display the subgraph corresponding to this cluster. Click on “local info” will only display this cluster’s links on the coarsened graph. Edges are 
hidden since that amount is too large to be displayed.   
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3.3.2 Biological Classification of Clusters 

According to Yeast Protein Database21(YPD ), there are total 6,108 proteins 

discovered in yeast Saccharomyces cerevisiae by the time we collected data in January 

2001. These yeast proteins have been assigned by YPD  to different categories base on 

four criteria: 

1) Cellular Role refers to the major biological process where the protein involves in, 

such as “protein folding”, “ Energy generation”. Most of the published function 

prediction actually refers to this cellular role prediction. In this thesis, we’ll stick 

to this tradition and  “function” in our context mainly refers to cellular role if not 

specified. 

2) Molecular environment consists of 9 members and denotes the molecular 

environment where a protein is located within the cell, e.g. “Soluable” and “RNA-

associated”. 

3) Subcellular localization refers to the specific site in a cell where a protein is 

located and consists of 22 members such as “ secretory vesicles” or “nuclear 

pore”. 

4) Biochemical function describes the principal structural, regulatory, or enzymatic 

function of the protein such as “ligand”, “pheromnoe”, or “DNA-binding protein” 

and consists of 57members. 

The January 2001 version of YPD  included 3649(59.74%), 2507(41.04%) , 

3070(50.26%), 3234(52.85%) proteins with labeled “cellular role”, “ molecular 

environment”, “subcellular localization”, and “biochemical function” respectively. This 

YPD  classification is broad and many proteins are assigned with more than one category 
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in the same criteria. The detail information about this is summarized in Table 2. Among 

these 4 criteria, “cellular role” and “biological function” will be closely related to the 

protein-protein interactions. Therefore, we will mainly focus on these two in our 

following discussion. 

Table 3. 2 YPD  Categories Information. 

Total 6108 proteins 
Criteria Member 

Number 
Number of 
Labelled Proteins 

Percentage 
of Labeled 
Proteins 

Percentage of Labeled 
Proteins with more than 
1 assignment 

cellular role 43 3649  59.74%  41.08%  
 

molecular 
environment 

9 2507  41.04%  6.42%  
 

subcellular 
localization 

28 3070  50.26%  27.43% 
 

biochemical function 57 3234  52.95%   47.59% 

 

In our graph coarsening algorithms, several clusters with significant size have been 

identified. Spontaneously, our next question is that whether nodes (representing proteins) 

inside each cluster have some biological relationship or they just group together by 

chance. To test this, we study the biological features insider the chosen cluster under the 

overall network backgroud. Here is our general strategy: 

1) Randomly choose three cluster containing more than 20 nodes as our study cases. 

2) Calculate the protein functional distribution over the whole network based on 

certain criteria like “cellular role” etc. Here the “functional” refers to a specific 

type of a classification criteria. For example, the “cellular role” of protein “PDE1” 

is “aging”, with “hydrolase” as its biological function. To be more specific, we 

calculate how many percentage of proteins falls into “aging”, “protein folding” 
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and so on. Based on these data, we can obtain an overall distribution for the 

“cellular role”. Same thing is done for “biological function”.  

3) Perform the similar computation as 2) at each cluster.  

4) Let Pall,i be the percentage of a certain type in overall graph distribution, and Pc,i 

be the one of cluster,  we define the abnormal index α as:  

iall

iallic
P

PP
,

,, )( −=α  

α = 0 if Pc,i is less than Pall,i and i refers to a specific functional type.  This α can 

be regard as an index of how the occurrence of this functional type is unique for this 

cluster.  

5) For each cluster, we choose the top three types with highest counts of occurrence.  

Besides our coarsening algorithms, the reliabilities of our data source will also have a 

great effect on the answer to this question of relationship between topological structure 

and biological interactions. Since CID network derived from data that has been widely 

accepted and verified, we will limit our basic biological exploration to CID network. The 

results are listed in Table 3.3. 

 Table 3.3 convincingly proved the previous assumption proposed by biologist5 that 

protein with similar function (in broad sense as referring to both “cellular role” and 

“biological function”) is more likely to be clustered together.  It might also suggest some 

relationships between the most “popular” functional types inside the same clusters. 

However, the proof of this hypothesis is out of the scope of this thesis and beyond the 

author’s limted biological knowledge.  
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Table 3. 3 List of top 3 “fuctional” types inside three clusters with different size and their abnormal 

indices 

Criteria Cluster 

index 

Number of nodes 

in cluster  

Functional name Occurrence α 

Carbohydrate metabolism 7 3.745715 

Cell cycle control 5 0.765519 

5 43 

Pol II transcription 5 0.377966 

Mating response 24 4.694857 

Cell polarity 22 4.220286 

16 68 

Signal transduction 18 4.089021 

Protein translocation 5 7.405871 

Cell stress 5 3.371053 

 

 

cellular 

role 

55 20 

Protein folding 11 12.73759 

Transcription factor 7 1.296 

Complex assembly protein 6 6.028571 

5 43 

Hydrolase 4 0.009231 

Protein kinase 10 3.270834 

Transferase 10 0.990291 

16 68 

GTP-binding protein/GTPase 7 3.948276 

Chaperones 11 10.5641 

Heat shock protein 8 16.94188 

 

Biological 

function 

55 20 

Hydrolase 5 0.293886 
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Chapter 4  

Protein Category Prediction   

The process of finding the function of a protein usually involves a lot of genetic and 

biological experiments if there is no protein available with similar amino acid sequence 

and known functions. However, as more data have been collected into protein databank, 

new strategies become possible.  

Marcotte et al22 categorized the proteins by correlated evolution, mRNA expression 

patterns, protein interaction, and patterns of domain fusion to generate of 93,750 

functional links with different “confidence quality” among 4,701 proteins of the yeast 

Saccharomyces cerevisiae.  Using these functional links, they provided general function 

assignment to more than half of the 2,557 previously uncharacterized yeast proteins. 

Among these, 374 (or 15%) were assigned a general function from the high and highest 

confidence functional links.  After that, Fields group23 at University of Washington 

performed a global analysis on 2,709 published interactions between proteins of the yeast 

Saccharomyces cerevisiae and established a single large network of 2,358 interactions 

(functional links) among 1,548 proteins, i.e., the PID network used in this thesis. Based 

on the known functions of the interacting partners, they correctly predicted a functional 

category for 72% of the 1,393 characterized proteins with at least one partner of known 

function. 394 previously uncharacterized proteins have been predicted.   
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Biological experiments show that protein coded by a similar sequence would be 

functionally linked.  Based on this consideration, we introduced similar-sequence protein 

links into our version of protein connectivity network SID, in addition to protein-protein 

interaction data. It is expected that we can provide more accurate functional prediction to 

more unknown proteins using this SID map. 

Of the total 6,108 yeast proteins, similar functional proteins cluster into a specific 

region of the large network. In another word, if two proteins have interaction or/and 

sequence similarity, they have the high probability to share the same function class.  This 

has been partially proved in section 3.3.2. Table 4.1 shows the percentage of links in SID 

with two proteins that have been characterized and share at least one common function. It 

implies that 60.25 % of the links in SID graph with two proteins characterized can also 

be considered as “functional similarity” links.  Further analyses also demonstrate that 

proteins that are found in the same location or in the same complex (molecular 

Environment) or with the same biochemical function are likely to be involved in the same 

or related cellular process(functions). For example, Table 4.1 shows that among 12478 

proteins links that have both function and subcellular location characterized, 8365 have 

similar subcellular location and 76.12% of these 8365 links have same function.  

 Table 4.1 also lists such statistical data for CSD graph. Not surprisingly, the CSD 

displays very close statistical features to SID with regard to the “functional similarity 

comparison”. Noting that our CSD graph is the largest component in the unconnected 

SID graph and contains only ~60% of the original SID nodes, we may say that this 

“functional similarity ” applies to every region of the SID graph. If we compute the 

percentages of the links with similar function among different regions of the graph, they 
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should be very close to each other. It follows naturally that such conclusion would also 

apply to those area with proteins uncharacterized.  Therefore, we can use this protein 

network to predict, or at least, narrow down the possible functional assignment of an 

unknown protein based on its connectivity with other characterized proteins.  

Table 4. 1  Function Similarity Analysis of SID graph.  

 SID (total 6108 )proteins CSD (total 3725 proteins) 

 Criteria  % Characterized  
Links**   

 % Characterized  
Links**   

Cellular role   60.25% 17010 59.85% 16696 

Cellular role& molecular 
environment   

86.64%  9367 85.35%  9179 

Cellular role & 
biochemical function   

80.85% 13451 78.46% 13160 
 

Cellular role & subcellular 
localization 

76.12% 12478 74.17% 12257 

**Characterized Links-----number of links consists of two proteins that have been characterized with 

respect to criteria. 

4.1 Method I----Simple Function Comparison 

To prove the correctness of this strategy and assess the reliability of this SID network, 

we determine how well this SID network can be used to predict the functions of those 

already characterized proteins following the similar method proposed by Fields group1. 

Here is the detail description: Let P be the protein under consideration, for each protein 

that has link with P in the SID graph, if it has been characterized, put its function into the 

candidate function list. Then, we count the how many times each function class appear in 

the candidate function list, and choose the first 3 with highest count (> 0) as our predicted 

functions for P. After that, we compare our prediction and the actual functions of P, if 

they share at least one, then we regard this prediction for P as correct.  By this method, 



 49 

the SID allows a correct prediction for 82.67% of the 3116 characterized proteins with at 

least one characterized partner. This can be compared to 72% correctness of the 1,393 

characterized proteins obtained by Fields group.  

4.2 Method II----Cross Function Links 

During our study, we noticed that cross-function links also exist in our SID database. 

For certain functions like “septation”, they even don’t have similar function links, i.e., a 

“septation” protein is more likely to have relationship with a different functional protein 

rather another “septation” protein. Let i, j denote protein function, e.g. “aging”, 

“meiosis”, we count the number of links for each combination of function among SID 

network and denotes this number as count(i,j).  If i≠j and count(i,j) > count(i,i)/2, then we 

regard this cross-function link between i and j is significant(‘1’ shown in Table 4.2). As 

shown in Table 4.2, even though the similar function linkage dominated in this table 

(larger number along the diagonal inside the matrix), some cross-function linkages are 

also significant to be noticed. For example, if a protein has function “aging ”, its partners 

(the proteins that have links with P in SID network) are highly possible to possess 

function of same function of  “cell cycle control” or “chromatin” function in addition to 

protein with “aging” function. To account for this, we modify our prediction Method I as 

following:   

1) First, we count the number for each possible cross-function link count[i][j], 

including similar-function link, among SID graph ; 

for each link(P1, P2) in SID{ 

if ( both P1 and P2 are characterized){  

for each function i, j that P1, P2 possess respectively   



 50 

count[i][j]++; 

}}}  

2)  To predict the function of a protein P with at least one characterized partner, we 

put all the functions that P1, which has direct link with P in SID and has been 

characterized, into a candidate list. We repeat this for every qualified partner of P 

and end up with a long list. The total number of functions in the candidate list is 

denoted as NUM; Then, we compute the number of appearance for each possible 

function, function[i], in this list.  

3)  After that, we calculate the score for function i that protein P might possess as 

following: 

∑

∑
=

=

j

2)]/total[i]count[i][j*NUM - j](function[  Score[i]

 ];][[ total[i]
j

jicount
  

4) Finally, we choose our prediction for protein P as the top 3 ones with lowest score.  

 Using this method, the SID makes a correct prediction for 79.07% of the 3116 

characterized proteins with at least one characterized partner. This number is a little bit 

lower than our simple prediction method I.   However, if we broaden our prediction 

range, i.e., we choose the top 10, instead of 3 with highest score or frequency, method II 

will make a correct prediction for 96.63% of the characterized proteins, comparing to 

88.96% obtained by method I.  This suggest that method II be good for narrowing down 

the prediction range or to exclude those false functions but not suitable to predict correct 

function in a short range. 
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Table 4. 2 The significant level for each combination of cellular role in SID network 

  AA Am Cm Ca Cc Cp Cs1 Cs2 Cw Cs CC Dr Ds DD Eg Lf Mr MM Mf Mt MM Nt Nm OO Om Pm PI PI PI Pc Pd Pf Pm Ps Pt Rp Rs Rt RR SS St Sm Vt 
Aging AA 1       1         1                                   1                         1     
Amino-acid metabolism Am   1                                                                               1   
Carbohydrate metabolism Cm     1                                                                             1   
Cell adhesion Ca     1 1 1   1 1 1 1       1     1       1             1                         1     
Cell cycle control Cc         1                                             1                               
Cell polarity Cp           1                     1                                                   1 
Cell stress Cs1             1   1                                     1                         1     
Cell structure Cs2           1   1                                                                     1 
Cell wall maintenance Cw                 1                                                                     
Chromatin/chromosome structure Cs         1         1                                   1                               
Cytokinesis CC         1 1     1   1           1       1             1                             1 
DNA repair Dr         1         1   1 1                             1                               
DNA synthesis Ds         1         1   1 1                                                             
Differentiation DD*     1   1 1 1   1 1 1     1     1 1       1           1     1   1               1   1 
Energy generation Eg                             1                                                     1   
Lipid, fatty-acid and sterol metabolism Lf                               1                                                   1   
Mating response Mr         1 1                     1                     1                         1     
Meiosis MM         1         1   1         1 1     1             1     1   1     1     1   1     
Membrane fusion Mf                                     1                                               1 
Mitochondrial transcription Mt                             1         1                                               
Mitosis MM         1                               1                                             
Nuclear-cytoplasmic transport Nt                                           1                                           
Nucleotide metabolism Nm                                             1                                         
Other* OO   1 1   1   1 1   1   1 1 1 1 1 1 1     1 1   1       1 1   1   1 1 1 1 1 1     1   1 
Other metabolism Om   1                                             1     1                           1   
Phosphate metabolism Pm     1   1                                         1   1                           1   
Pol I transcription PI         1   1     1                                 1 1 1                             
Pol II transcription PI                                                       1                               
Pol III transcription PI         1         1                                 1 1 1                             
Protein complex assembly Pc         1     1   1                     1             1   1   1                   1   
Protein degradation Pd                                                             1                         
Protein folding Pf                                                               1                       
Protein modification Pm                                                             1   1                     
Protein synthesis Ps                                                                   1   1               
Protein translocation Pt                                                               1     1                 
RNA processing/modification Rp                                                                       1               
RNA splicing Rs                                                                       1 1             
RNA turnover Rt         1         1                                               1   1 1 1           
Recombination RR         1         1   1 1         1                   1     1               1         
Septation** SS                                                                                       
Signal transduction St                                 1                                               1     
Small molecule transport Sm                                                                                   1   
Vesicular transport Vt                                                                                     1 

*fuction "Differenctiation" and "Other" has more cross-function links than similar function links 
** Septation has no similar function interaction. 
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4.3 Method III----Prediction With Auxiliary Criteria 

As mentioned above, proteins that are found in the same location or in the same 

complex(molecular Environment) or with the same biochemical function are more likely 

to be involved in the same or related cellular process. Thus, we expect to obtain a better 

correct prediction if we combine other criteria to build the candidate list. Based on this, 

we proposed another prediction method as described following: 

Let P be the protein under consideration and C as our auxiliary criteria, for each 

protein P2 that has link with P in the SID graph, if it has been characterized for both 

function and criteria C, and if it share at least one feature with P with regard to criteria C, 

put its function into the candidate function list. Then, we count the how many times each 

function class appear in the candidate function list, and choose the first 3 with highest 

count (> 0) as our predicted functions for P.  Table 4.3 compares all of these three 

methods. It shows that method III correctly predict 91.81% of 1930 characterized 

proteins by using molecular environment as auxiliary criteria, 88.75% of 2419 

characterized proteins by using biochemical functions, and 88.14% of 2252 characterized 

proteins by using subcellular locations. All these three auxiliary criteria increase our 

correct prediction rate at the price of decreasing the number of proteins it can predict.   

4.4 Summary 

Table 4.3 also lists the correct prediction percentage and number of uncharacterized 

protein we can predict based on the CSD graph. The results are quite close to those 

obtained from SID graph. The approximately 1/5 false prediction from method I or less 
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from others are likely due to the false links we included in our network, incomplete 

function annotation for a given characterized protein, or undiscovered connections so far 

etc. Even this minor false prediction might require us be cautious when making any 

interpretation of new inferences from this SID or CSD networks, the overall validity of 

network SID or CSD to predict function seems confirmed.  

Table 4. 3 Summary  of results from three protein prediction methods 

SID(6,108 proteins) 

 Correct 
Prediction % 

#of 
characterized 
protein 

# of unknown 
protein   
predicted 

Method I 82.67% 3116 907 
 

Method II 79.07% 3116 907 

Biochemical function 88.76% 2419 
 

138 
 

Molecular Environment 91.81% 1930 
 

65 
 

Method III 

Subcellular Location 88.14% 2252 89 

CSD(3,725 proteins) 

Method I 80.83% 2732 795 
 

Method II 79.57% 2732 795 

Method III Biochemical function 88.52% 2090 126 
 

 Molecular Environment 91.40% 1790 60 

 Subcellular Location 87.17% 2027 81 
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Chapter 5 

Conclusions 

In this thesis, we built up two protein-protein relationship networks detailed at 

different level from real world data, i.e. PID and SID graph. To the best of our 

knowledge, SID network are the first one that combines the interaction and sequence 

similarity data. Based on the our study toward the global structure of them, the following 

conclusions can be made: 

1) Topological studies of the largest connected component inside PID and SID 

network indicate that they both exhibit “small world” properties of clustering 

and small characteristic path length at different clustering level. If we put PID 

and SID between two extremes of random graph and regular graph, PID is 

much closer to random graph while SID inclines towards regular graph. In 

addition, power law relationship is also observed in both networks.  

2) A graph clustering and coarsening algorithm based on the unique existence of 

shortcuts and cut nodes inside a “small world” has been proposed. The overall 

time complexity of this algorithm is O(|E|+ |V|*k2)* kr), mainly due to the 

discovery of shortcuts and cut nodes. Layouts of the coarsened graph indicate 

that this algorithm works better for “small world” graph whose structure is 

characterized with  “locally dense” and “globally sparse”. In our study, it 

simplifies the display complexity of PID graph. 
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3) Topological clusters identified by our proposed algorithms demonstrated a 

highly degree of “functional clustering”. It is expected that future topological 

study of the network structure may also reveal some hidden biological 

connection.  

4) Based on SID network, we developed three prediction methods for protein 

functional assignments. All of these three methods using our SID network 

provide higher prediction accuracy than the one reported in recent published 

paper.   
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Appendix  

Source Code 

The following is the major part of source codes of our graph clustering, coarsening and 

drawing algorithms. 

Coarsen.java 

/*coarsen()--read a rough connected graph with name of the node and interface with graph drawing 
Author: Li Zhong 
*/ 
 
import java.io.*; 
import java.util.*; 
import java.awt.*; 
 
public class coarsen{ 
 static int MAX = 4000;   
 static int MAX_I = 6500; 
 static int MAX_G = 1500; 
 int threshold1 = 0; //the threshold between normal cluster and cluster with all shortcut;
 int threshold2 = 0; //the threshold between cluster with all shortcut and abstract node; 
 List edge[];  //the adjacent list  
 List group[];  //the shortcut node with group i is connected with  
 List member[];  //the node in the group i 
 String name[];  //the protein name of node x  
 //List group[];  //the groups which shortcut node is associated with  
  
 boolean isFakeCut[]; //count for those vertex with less than 2 links.   
 boolean scut[];  //decide if a vertex is shortcut vertex; 
 int v_nbr = MAX; //the total vertex number in the graph 
 int e_nbr = MAX; //the total edge number in the graph 
   
 G g = new G();  //keep track of the short cut node 
 G CG = new G();  //clustered graph 
  
 int GroupNbr = 0; 
 int cv_VIP = 0; 
  
 coarsen(){   
  edge = new List[MAX];  
  group = new List[MAX];  
  scut = new boolean[MAX]; 
  isFakeCut = new boolean[MAX];  
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  member = new List[MAX]; 
  name = new String[MAX];   
   
  for(int i = 0; i < MAX; i++){  
   edge[i] = new List();  
   group[i] = new List(); 
   member[i] = new List(); 
   scut[i] = false; 
   isFakeCut[i] = false; 
   name[i] = " "; 
   //member[i] = 0; 
  } 
 }  
   
 void readFile(String filename){  
  Runtime rt = Runtime.getRuntime(); 
  rt.gc();  
  int index[] = new int[MAX_I]; 
  for ( int i = 0; i < MAX_I; i++) 
   index[i] = -1; 
  try{  
   FileInputStream fis1 = new FileInputStream(filename); 
   BufferedReader is1 = new BufferedReader(new FileReader(fis1.getFD()));  
   String in1 = is1.readLine();   
    
   int count = 0; 
   while ( in1 != null){  
    if(in1.indexOf(".") != -1){  
    int from =  Integer.parseInt in1.substring(0, in1.indexOf(".")).trim());  
    index[from] = count; 
    count++; 
    }     //end if    
     
    in1 = is1.readLine();   
   }      //end while 
   is1.close();   
  }       //end try-catch   
  catch (IOException e)  { 
   System.out.println("File "+filename+" Not Found"); 
  }  
   
  try{  
   FileInputStream fis1 = new FileInputStream(filename); 
   BufferedReader is1 = new BufferedReader(new FileReader(fis1.getFD()));  
   String in1 = is1.readLine();   
    
   int count = 0; 
   int edgecount = 0; 
   while ( in1 != null){ 
    int from, to, from_i = -1, to_i = -1; 
    String temp, protein; 
     
    if(in1.indexOf(".") != -1 && in1.indexOf("->") != -1){  
    from = Integer.parseInt(in1.substring(0, in1.indexOf(".")).trim());  
    from_i = index[from]; 
    protein = in1.substring(in1.indexOf(".")+1,  in1.indexOf(":")).trim(); 
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    name[from_i] = protein; 
      
    temp = in1.substring(in1.indexOf(":")+1).trim();   
   while (temp != null && temp.indexOf("->") != -1 ){  
    to = Integer.parseInt(temp.substring(0, temp.indexOf("->")).trim()); 
    to_i = index[to];      
    edge[from_i].insert(new Integer(to_i)); 
    temp = temp.substring(temp.indexOf("->")+2).trim();  
    edgecount++; 
   }      //end while  
     count++; 
  }       //end if  
    in1 = is1.readLine();    
 }        //end while 
 is1.close();   
  
 v_nbr = count; 
 e_nbr = edgecount/2; 
 rt.gc();  

}         //end try-catch 
catch (IOException e)  { 

 System.out.println("File "+filename+" Not Found"); 
}  } 

  
 public List getChildAtDepth(int i, int limit){  
  List L = new List();   
  boolean visit[] = new boolean[MAX]; 
  int depth[] = new int[MAX]; 
   
  for(int j= 0; j< MAX; j++) { 
   visit[j] = false;  
   depth[j] = 80; 
  } 
   
  Stack S = new Stack();  
  S.Push(new Integer(i)); 
  visit[i] = true; 
  depth[i] = 0; 
   
  while (S.getListNbr() != 0) { 
   int cur = ((Integer)(S.Pop())).intValue();  
   if(cur != i) L.insert(new Integer(cur)); 
   if ( depth[cur] < limit){ 
    for(Cell c = edge[cur].getHead(); c != null; c = c.rightOf()){ 
     int adj = ( (Integer)(c.objectOf()) ).intValue(); 
     if(!visit[adj])  { 
      S.Push(new Integer(adj)); 
      visit[adj] = true; 
      depth[adj] = depth[cur]+1; 
     } 
    } 
   }  
  }     
  return L; 
 } 
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 //this function will find if node j is reachable from j with distance of limit at the  
 //absence of node exclude; 
 public boolean isReachable(int i, int j, int exclude, int limit){  
  boolean visit[] = new boolean[MAX]; 
  int depth[] = new int[MAX]; 
   
  for(int k= 0; k< MAX; k++) { 
   visit[k] = false;  
   depth[k] = 80; 
  } 
   
  Stack S = new Stack();  
  S.Push(new Integer(i)); 
  visit[i] = true; 
  depth[i] = 0; 
   
  while (S.getListNbr() != 0) { 
   int cur = ((Integer)(S.Pop())).intValue();   
   if ( cur == j ) return true; 
   else if ( depth[cur] < limit){ 
    for(Cell c = edge[cur].getHead(); c != null; c = c.rightOf()){ 
     int adj = ( (Integer)(c.objectOf()) ).intValue(); 
     if(!visit[adj] && adj != exclude && !scut[adj])  { 
      S.Push(new Integer(adj)); 
      visit[adj] = true; 
      depth[adj] = depth[cur]+1; 
     } 
    } 
   }  
  }     
  return false; 
 } 
  
 public void cut(){  
  boolean temp[] = new boolean[v_nbr]; 
  for ( int j = 0; j < v_nbr; j++) 
   temp[j] =false; 
  int cutnode = 0; 
  for ( int i = v_nbr -1; i >= 0; i--){   
   if ( !scut[i] && edge[i].getListNbr() > 4){   
    List L = new List(); 
    for ( Cell c = edge[i].getHead(); c != null; c = c.rightOf()){  
    
     int adj = ((Integer)(c.objectOf())).intValue(); 
     if( ! scut[adj] && edge[adj].getListNbr() > 2) 
      L.insert(new Integer(adj)); 
    } 
    if ( L.getListNbr() >= 4 ){ 
    int count = 0; 
    boolean test = false; 
    for ( Cell c1 = L.getHead(); c1 != null && !test; c1 = c1.rightOf()){ 
    int from = ((Integer)(c1.objectOf())).intValue(); 
    for (Cell c2 = c1.rightOf(); c2 != null && !test; c2 = c2.rightOf()){ 
    int to = ((Integer)(c2.objectOf())).intValue(); 
    if (!isReachable(from, to, i, 4) ) count++;  
    if ( count >= 2) test =true; 
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    }} 
    if ( test ){  
     scut[i] = true; 
      g.insertV(i); 
      cutnode++; 
     } 
    } 
   }  
  }   //end for loop  
  System.out.println("total cut node = " + cutnode );   
 }  
    
 //find all the 2-level child of i except path through j 
 public List getChild(int i, int exclude){  
  List L = new List(); 
   
  boolean visit1[] = new boolean[MAX]; 
   
  for(int j= 0; j< MAX; j++)  
   visit1[j] = false;   
   
  for( Cell cur =edge[i].getHead(); cur != null; cur = cur.rightOf()){ 
   int to =(  (Integer)(cur.objectOf())  ).intValue(); 
   if(! visit1[to] && to != i && to != exclude){ 
    L.insert(new Integer(to)); 
    visit1[to] = true;  
     
   for( Cell child = edge[to].getHead(); child!= null; child = child.rightOf()){ 
   int to_child = ( (Integer)(child.objectOf())  ).intValue(); 
   if(! visit1[to_child] && to_child != i && to_child != exclude) { 
    L.insert(new Integer(to_child)); 
    visit1[to_child] = true;  
   } }   //end for 
   }    //end if  }   
  //end for   
  return L; 
 } 
   
 public String getName(int i ){ 
  return name[i]; 
 } 
  
  
 //test if two list have common field 
 public boolean isCross(List L1, List L2){   
   
  boolean found = false; 
  if(L1.getHead() != null && L2.getHead() != null){ 
    
   for( Cell c1 =L1.getHead(); c1 != null && !found; c1 = c1.rightOf()){ 
    int i1 =(  (Integer)(c1.objectOf())  ).intValue();  
     
    for( Cell c2 = L2.getHead(); c2!= null && !found; c2 = c2.rightOf()){ 
     int i2 = ( (Integer)(c2.objectOf())  ).intValue(); 
     if(i1 == i2) { 
      found = true; 
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     } 
    } 
   }    //end for 
  }     //end if 
   
  return found; 
 } 
  
 public int getVN(){ 
  return v_nbr; 
 } 
    
 public int ShortCut(){    
  Runtime rt = Runtime.getRuntime(); 
  rt.gc();     
    
  int count = 0; 
  int v_count = 0; 
  FakeCut(); 
  for(int i = 0; i < v_nbr; i++){ 
   if ( ! isFakeCut[i] ){ 
    for( Cell cur =edge[i].getHead(); cur != null; cur = cur.rightOf()){ 
     int to =(  (Integer)(cur.objectOf())  ).intValue();  
      
     if ( ! isFakeCut[to] ){  
       
      List fromL = getChild(i, to);    
      List toL = getChild(to, i);   
       
      if(!isCross(fromL, toL ) ){   
       g.insertE(i, to); 
       scut[i] = true; 
       scut[to] = true; 
       //System.out.println(i + "\t" + to); 
       count++; 
      } 
     }   //end if to is not fakecut 
    }    //end inner for loop 
   }     //end if from is not fakecut  
  }      //end out for loop 
  rt.gc(); 
  return count; 
 } 
   
 public void FakeCut() { 
  for ( int i = 0; i < v_nbr; i++){ 
   int AdjacentNbr = edge[i].getListNbr();     
   if ( AdjacentNbr <= 2) isFakeCut[i] = true; 
   else isFakeCut[i] = false; 
  } 
 } 
  
 public void SingleConnection(){ 
  for(int i = 0; i < v_nbr; i++) 
   isFakeCut[i] = false; 
  for(int j = 0; j < v_nbr; j++){ 



 62 

   if(! scut[j] ){ 
    boolean test = true;  
    for( Cell c = edge[j].getHead(); c != null; c = c.rightOf()){ 
     int adj = ((Integer)(c.objectOf())).intValue(); 
     if (scut[adj]) { 
      test = false; 
      break; 
     } 
    } 
    if ( edge[j].getListNbr()==1 ) test = true; 
    isFakeCut[j] = test; 
   } 
  } 
 }      
  
 public void findNeighbour(){ 
  boolean identified[] = new boolean[v_nbr]; 
  for(int i = 0; i < v_nbr; i ++) 
   identified[i] = false; 
   
  //VIP_ID is used to keep track the group it belongs to 
  int VIP_nbr = g.getVn() + cv_VIP; 
  List VIP_ID[] = new List[VIP_nbr]; 
  for(int m = 0; m < VIP_nbr; m++) 
   VIP_ID[m] = new List(); 
   
  int gid = 0; 
   
  SingleConnection(); 
   
  for(int j = 0; j< v_nbr; j++){ 
   if ( ( !scut[j]  ) && ( ! identified[j]) && edge[j].getListNbr() != 1 ){   
    
    boolean visit[] = new boolean[v_nbr]; 
    for(int k = 0; k < v_nbr; k++) 
     visit[k] = false; 
    Queue Q = new Queue(); 
    Q.Enqueue(new Integer(j)); 
    visit[j] = true; 
     
    while ( Q.getListNbr() != 0){ 
     int cur = ((Integer)(Q.Dequeue())).intValue(); 
     identified[cur] = true; 
     member[gid].insert(new Integer(cur)); 
      
     if( !scut[cur] ){ 
    for(Cell c = edge[cur].getHead(); c != null; c = c.rightOf()){ 
     int adj = ((Integer)(c.objectOf())).intValue(); 
        
     if (!visit[adj] ){ 
      Q.Enqueue(new Integer(adj)); 
      visit[adj] = true; 
     } } } 
     else{ 
     group[gid].insert(new Integer(cur));  
     VIP_ID[g.findIndex(cur)].insert(new Integer(gid)); 
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     for(Cell c = edge[cur].getHead(); c != null; c = c.rightOf()){ 
     int adj = ((Integer)(c.objectOf())).intValue(); 
        
     if (!visit[adj] && isFakeCut[adj] && !identified[adj] ){ 
      Q.Enqueue(new Integer(adj)); 
      visit[adj] = true; 
     }} 
     } 
    }     //end inner while loop     
    gid++; 
   }     //end out if  
  }      //end out for loop   
  threshold1 = gid; 
   
  //process the node with all links as short cut 
  for(int j = 0; j < v_nbr; j++){ 
   if (scut[j] && !identified[j] ){ 
    boolean visit[] = new boolean[v_nbr]; 
    for(int k = 0; k < v_nbr; k++) 
     visit[k] = false; 
     
    Queue Q1 = new Queue(); 
    Q1.Enqueue(new Integer(j)); 
    visit[j] = true; 
     
    while ( Q1.getListNbr() != 0){ 
     int cur = ((Integer)(Q1.Dequeue())).intValue(); 
     member[gid].insert(new Integer(cur));  
     identified[cur] = true; 
      
     for(Cell c = edge[cur].getHead(); c != null; c = c.rightOf()){ 
      int adj = ((Integer)(c.objectOf())).intValue();   
      if( ( !visit[adj] && edge[adj].getListNbr() ==1 )){ 
       Q1.Enqueue(new Integer(adj));  
       visit[adj] = true; 
      } 
      else if ( !visit[adj] && scut[adj] && identified[adj]){  
      if ( group[gid].isFound(cur) ==null) 
      group[gid].insert(new Integer(cur));  
      if(VIP_ID[g.findIndex(cur)].isFound(gid) == null)  
         
 VIP_ID[g.findIndex(cur)].insert(new Integer(gid));  
      } 
     }  //end inner for loop  
    }    //end while loop 
    gid++; 
     
   }     //end if loop;  
     
  }      //end out for loop   
   
  threshold2 = gid; 
    
   
  //test  
  int not_count= 0; 
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  for ( int l1 = 0; l1 < v_nbr; l1++){ 
   if ( ! identified[l1] ){  
    not_count ++;  
   } 
  }  
  //Weight[][] is the weight of the clustered graph 
  int[][] CGWeight = new int[MAX_G][MAX_G]; 
  for ( int l1 = 0; l1 < MAX_G; l1++) 
   for (int l2 = 0; l2 <MAX_G; l2++) 
    CGWeight[l1][l2] = 0;  
   
   
  for(int l1 = 0; l1 < g.getVn(); l1++){ 
   if ( VIP_ID[l1].getListNbr() > 1) { 
    for(Cell c = VIP_ID[l1].getHead(); c != null; c = c.rightOf()){   
     int from = ((Integer)(c.objectOf())).intValue(); 
     CGWeight[gid][from] += 2; 
     CGWeight[from][gid] += 2; 
     member[from].delete(g.getAtPos(l1)); 
     CG.insertE(gid, from); 
     VIP_ID[l1] = new List(); 
     VIP_ID[l1].insert(new Integer(gid)); 
    }  
    member[gid].insert(new Integer(g.getAtPos(l1))); 
    gid++; 
   }  
  }  
   
  GroupNbr = gid;  
 
 //build clustered graph 
 int count = 0;   
 for(Cell c = g.getV(); c != null; c = c.rightOf()){ 
 int orig_from = ((Integer)(c.objectOf())).intValue(); 
 for ( Cell edge_c = edge[orig_from].getHead(); edge_c != null; edge_c = edge_c.rightOf()){ 

int orig_to =((Integer)(edge_c.objectOf())).intValue(); 
 int adj = g.findIndex (orig_to); 
 if ( scut[orig_to] ){ 
 for ( Cell from_c = VIP_ID[count].getHead(); from_c != null; from_c = from_c.rightOf()){ 
 int from = ((Integer)(from_c.objectOf())).intValue(); 
 for ( Cell to_c = VIP_ID[adj].getHead(); to_c != null; to_c = to_c.rightOf()){ 
 int to =((Integer)(to_c.objectOf())).intValue(); 
 CGWeight[from][to] ++;  
 CGWeight[to][from]++; 
 CG.insertE(from, to);  
      } 
     }  //end inner for loop 
    } 
   }    //end the for edge list  
   count ++; 
  }     //end the outermost for loop  
   
  //correction for the two counts 
  for ( int l1 = 0; l1 < gid; l1++) 
   for (int l2 = 0; l2 < gid; l2++) 
    CGWeight[l1][l2] /= 2;   
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  //print Clustered graph 
  //System.out.println("Clustered graph is \n");  
  System.out.println("total vertex = " + CG.getVn() + " Edge# = " + CG.getEn()); 
  System.out.println("Thresh1 =" + threshold1 + "  Thresh2 =" + threshold2);  
   
  System.out.println("Clustered graph based on CGWeight matrix is \n");  
  for ( int i = 0; i < gid; i ++){ 
   System.out.print( i + " : " ); 
   for (int j = 0; j < gid; j++){ 
    if (CGWeight[i][j] > 0) 
     System.out.print(" " + j +"/"+ CGWeight[i][j]+ "->"); 
   } 
   System.out.println(); 
  } 
   
  System.out.println(" cluster = " + CG.isConnected()); 
     
 }      //end findNeighbour()  
  
   
public void printGroup(){ 
 int count = 0; 
 for(int i = 0; i < v_nbr; i ++){ 
  if (group[i].getListNbr() != 0 ){  
   for ( Cell c = group[i].getHead(); c != null; c = c.rightOf()){ 
    System.out.print( ((Integer)(c.objectOf())).intValue() + "-> "); 
   } 
   System.out.println();  
   count++; 
  } 
 } 
 count = 0;  
  

int[] membercount = new int[400]; 
for(int i = 0; i < 400; i++){ 
 membercount[i] = 0; 

  int maximum = 0; 
   
  System.out.println("Member information"); 
  for(int i = 0; i < v_nbr; i ++){ 
   int mcount = member[i].getListNbr(); 
   if (mcount  != 0 ){  
    System.out.print(" i = " + i +  " ( " + mcount + "): " ); 
    if ( i < threshold2 ){ 
     membercount[mcount/10]++; 
     if ( maximum < mcount) maximum = mcount; 
    } 
     
    for ( Cell c = member[i].getHead(); c != null; c = c.rightOf()){ 
     System.out.print( ((Integer)(c.objectOf())).intValue() + "-> "); 
    } 
    System.out.println(); 
    count++; 
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   } 
  } 
  maximum /= 10; 
  System.out.println("Total real cluster number = " + threshold1); 
  System.out.println("\tmember number" + "\tcount"); 
  for( int i = 0; i < (maximum+1); i++){ 
   if (membercount[i] != 0)  
    System.out.println("\t" + i + "\t" + membercount[i]); 
  }   
 }  
  
 public G getCluster(){ 
  return CG; 
 }  
  
 public void printG(){ 
  g.print(); 
 } 
  
 public int getThreshold1(){ 
  return threshold1; 
 } 
  
 public int getThreshold2(){ 
  return threshold2; 
 } 
  
 public int getMemberNbr(int i ){ 
  if ( i >= 0 && i < GroupNbr) 
   return member[i].getListNbr(); 
  else  
   return 0; 
 }  
  
 public int getGroupNbr(int i ){ 
  if ( i >= 0 && i < GroupNbr) 
   return group[i].getListNbr(); 
  else  
   return 0; 
 }  
  
  
 public G1 getMember(int i){ 
  if ( i >= 0 && i < GroupNbr){ 
   G1 subgraph = new G1(); 
   //all the member are shortcut  
   for ( Cell c = member[i].getHead(); c != null; c = c.rightOf()){  
    int node = ((Integer)(c.objectOf())).intValue();   
  
    if ( member[i].getListNbr() ==1 ) {  
     subgraph.insertV(node); 
    } 
    else if ( group[i].getListNbr() == member[i].getListNbr()){ 
    for ( Cell c1 = edge[node].getHead();c1 != null; c1 = c1.rightOf()){ 
      int adj = ((Integer)(c1.objectOf())).intValue();   
      if (member[i].isFound(adj) != null) 
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       subgraph.insertE(node, adj); 
     } 
    } 
    else if( !scut[node] ){ 
    for ( Cell c1 = edge[node].getHead();c1 != null; c1 = c1.rightOf()){ 
      int adj = ((Integer)(c1.objectOf())).intValue();   
      subgraph.insertE(node, adj); 
     } 
    }    //end for;   
   }    
   int count = 0; 
   for (Cell c = subgraph.getV(); c != null; c = c.rightOf()){  
    int node = ((Integer)(c.objectOf())).intValue();  
    subgraph.setName(name[node],count); 
    subgraph.setScut(scut[node],count); 
    count++; 
   }     
   return subgraph; 
  } 
  else return null; 
 }  
  
 public void Function(){ 
  String category[] = new String[4]; 
  category[0] ="..\\0430\\CellRole.txt"; 
  category[1] = "..\\0430\\function.txt"; 
  category[2] = "..\\0430\\MolecularE.txt"; 
  category[3] = "..\\0430\\Sub.txt"; 
  for ( int k = 0; k < 4; k++){ 
   System.out.println("Category = " + category[k]);  
   GetFunction GF = new GetFunction();  
   GF.readFunction(category[k]); 
    
   int count[] = new int[GF.getFN()]; 
   int total = 0; 
   for(int j = 0; j < GF.getFN(); j++){ 
    count[j] = 0; 
   } 
   for ( int i = 0; i < v_nbr; i++){ 
    if ( scut[i] ){ 
     List L = GF.getFunc(name[i]); 
     if ( L != null){ 
     for(Cell c = L.getHead(); c != null; c= c.rightOf()){ 
      int func = ((Integer)(c.objectOf())).intValue(); 
       count[func] ++; 
       total++; 
      } 
     } 
    } 
   }  
 for (int j = 0; j < GF.getFN(); j++) 
  System.out.println("\t" + j + "\t" + GF.getName(j) + "\t" + (float)count[j]/total);  
  } 
 } 
    
}  
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