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Abstract

Random networks with complex topology are common in Nature, describing systems as diverse
as the world wide web or social and business networks. Recently, it has been demonstrated that
most large networks for which topological information is available display scale-free features.
Here we study the scaling properties of the recently introduced scale-free model, that can account
for the observed power-law distribution of the connectivities. We develop a mean-�eld method
to predict the growth dynamics of the individual vertices, and use this to calculate analytically
the connectivity distribution and the scaling exponents. The mean-�eld method can be used to
address the properties of two variants of the scale-free model, that do not display power-law
scaling. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Contemporary science has been particularly successful in addressing the physical
properties of systems that are composed of many identical elements interacting through
mainly local interactions. For example, many successes of materials science and solid
state physics are based on the fact that most solids are made of relatively few types
of elements that exhibit spatial order by forming a crystal lattice. Furthermore, these
elements are coupled by local, nearest-neighbor interactions. However, the inability of
contemporary science to describe systems composed of non-identical elements that have
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diverse and non-local interactions currently limits advances in many disciplines, ranging
from molecular biology to computer science [1,2]. The di�culty in describing these
systems lies partly in their topology: many of them form complex networks, whose
vertices are the elements of the system and edges represent the interactions between
them. For example, living systems form a huge genetic network, whose vertices are
proteins, the edges representing the chemical interactions between them [3]. Similarly,
a large network is formed by the nervous system, whose vertices are the nerve cells,
connected by axons [4]. But equally complex networks occur in social science, where
vertices are individuals, organizations or countries, and the edges characterize the social
interaction between them [5], in the business world, where vertices are companies and
edges represent diverse business relationships, or describe the world wide web (www),
whose vertices are HTML documents connected by links pointing from one page to
another [6,7]. Due to their large size and the complexity of the interactions, the topology
of these networks is largely unknown or unexplored.
Traditionally, networks of complex topology have been described using the random

graph theory of Erdős and R�enyi (ER) [8,9]. However, while it has been much in-
vestigated in combinatorial graph theory, in the absence of data on large networks the
predictions of the ER theory were rarely tested in the real world. This is changing very
fast lately: driven by the computerization of data acquisition, topological information
on various real-world networks is increasingly available. Due to the importance of un-
derstanding the topology of some of these systems, it is likely that in the near future
we will witness important advances in this direction. Furthermore, it is also possible
that seemingly random networks in Nature have rather complex internal structure, that
cover generic features, common to many systems. Uncovering the universal properties
characterizing the formation and the topology of complex networks could bring about
the much coveted revolution beyond reductionism [1,2].
A major step in the direction of understanding the generic features of network devel-

opment was the recent discovery of a surprising degree of self-organization character-
izing the large-scale properties of complex networks. Exploring several large databases
describing the topology of large networks, that span as diverse �elds as the www or
the citation patterns in science, recently Barab�asi and Albert (BA) have demonstrated
[10] that independently of the nature of the system and the identity of its constituents,
the probability P(k) that a vertex in the network is connected to k other vertices de-
cays as a power law, following P(k)∼k−
. The generic feature of this observation was
supported by four real-world examples. In the collaboration graph of movie actors,
each actor is represented by a vertex, two actors being connected if they were casted
in the same movie. The probability that an actor has k links was found to follow a
power law for large k, i.e. P(k)∼k−
actor , where 
actor = 2:3 ± 0:1: A rather complex
network with over 800 million vertices [11] is the www, where a vertex is a docu-
ment and the edges are the links pointing from one document to another. The topology
of this graph determines the web’s connectivity and, consequently, our e�ectiveness
in locating information on the www [6]. Information about P(k) can be obtained
using robots [7], indicating that the probability that k documents point to a certain
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webpage follows a power law, with 
inwww=2:1,
1 and the probability that a certain web

document contains k outgoing links follows a similar distribution, with 
outwww = 2:45.
A network whose topology re
ects the historical patterns of urban and industrial devel-
opment is the electrical powergrid of western US, the vertices representing generators,
transformers and substations, the edges corresponding to the high voltage transmission
lines between them [12]. The connectivity distribution is again best approximated with
a power law with an exponent 
power ' 4. Finally, a rather large, complex network is
formed by the citation patterns of the scienti�c publications, the vertices standing for
papers, the edges representing links to the articles cited in a paper. Recently, Redner
[13] has shown that the probability that a paper is cited k times (representing the con-
nectivity of a paper within the network) follows a power law with exponent 
cite = 3.
These results o�ered the �rst evidence that large networks self-organize into a scale-free
state, a feature unexpected by all existing random network models. To understand the
origin of this scale invariance, BA have shown that existing network models fail to
incorporate two key features of real networks: First, networks continuously grow by
the addition of new vertices, and second, new vertices connect preferentially to highly
connected vertices. Using a model incorporating these ingredients, they demonstrated
that the combination of growth and preferential attachment is ultimately responsible for
the scale-free distribution and power-law scaling observed in real networks.
The goal of the present paper is to investigate the properties of the scale-free model

introduced by BA [10], aiming to identify its scaling properties and compare them
with other network models intended to describe the large scale properties of random
networks. We present a mean �eld theory that allows us to predict the dynamics of
individual vertices in the system, and to calculate analytically the connectivity distri-
bution. We apply the same method to uncover the scaling properties of two versions
of the BA model, that are missing one of the ingredients needed to reproduce the
power-law scaling. Finally, we discuss various extensions of the BA model, that could
be useful in addressing the properties of real networks.

2. Earlier network models

2.1. The Erdős–R�enyi model

Probably the oldest and most investigated random network model has been introduced
by Erdős and R�enyi (ER) [8,9], who were the �rst to study the statistical aspects of
random graphs by probabilistic methods. In the model we start with N vertices and no
bonds (see Fig. 1a). With probability pER, we connect each pair of vertices with a line
(bond or edge), generating a random network. The greatest discovery of ER was that
many properties of these graphs appear quite suddenly, at a threshold value of pER(N ).

1 Note that in addition to the distribution of incoming links, the www displays a number of other scale-free
features, characterizing the organization of the webpages within a domain [33], the distribution of searches
[34], or the number of links per webpage [6].
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Fig. 1. Schematic illustration of the Erdős–R�enyi (ER) and Watts–Strogatz (WS) models. (a) A random
network described by the ER model has N vertices connected with probability pER, the total number of
edges in the system being n = pERN (N − 1)=2. The example presents a network of N = 10 vertices for
pER = 0 and pER = 0:2. At pER = 0 there are no edges in the system. We select each pair of vertices and
connect them with probability pER = 0:2. The �gure shows the result of this process, the network having
n = 9 edges. For pER = 1 the model leads to a fully connected network. (b) The WS model starts with a
regular one-dimensional lattice with edges between the nearest and next-nearest neighbors, thus the average
connectivity is 〈k〉=4. Then a fraction pWS of the edges is rewired randomly (their endpoint is changed to
a randomly selected vertex). The example presents a network of N = 10 vertices. For pWS = 0 the system
is a regular lattice with 2N = 20 edges. For pWS = 0:3, 2pWSN = 6 edges have been rewired to randomly
selected vertices. Note that for pWS = 1 we obtain a random network, equivalent to that obtained for the
ER model with pER = 〈k〉=N = 0:4.

A property of great importance for the topology of the graph is the appearance of trees
and cycles. A tree of order k is a connected graph with k vertices and k−1 edges, while
a cycle of order k is a cyclic sequence of k edges such that every two consecutive
edges and only these have a common vertex. ER have demonstrated that if pER ∼ c=N
with c¡ 1, then almost all vertices belong to isolated trees, but there is an abrupt
change at pER∼1=N , (i.e. c = 1), when cycles of all orders appear. In the physical
literature the ER model is often referred to as in�nite dimensional percolation, that is
known to belong to the universality class of mean �eld percolation [14]. In this context
pc∼1=N is the percolation threshold of the system. For p¡pc the system is broken
into many small clusters, while at pc a large cluster forms, that in the asymptotic limit
contains all vertices.
To compare the ER model with other network models, we need to focus on the

connectivity distribution. As Erdős and R�enyi have shown in their seminal work, the
probability that a vertex has k edges follows the Poisson distribution

P(k) = e−��k=k! ; (1)
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Fig. 2. Connectivity distributions for the ER and WS models. (a) P(k) in the ER model for N =10000 and
for pER =0:0006 (circles), pER =0:001 (squares) and pER =0:0015 (diamonds). (b) P(k) in the WS model
for N =10000, 〈k〉=6 and three rewiring probabilities pWS = 0 (circle, corresponding to the delta-function
�(k − 6)), pWS = 0:1 (squares) and pWS = 0:3 (diamonds).

where

�=
(
N − 1
k

)
pkER(1− pER)N−1−k ; (2)

its expectation value being (N − 1)pER. For sake of comparison, in Fig. 2a we show
P(k) for di�erent values of pER.

2.2. The small-world model

Aiming to describe the transition from a locally ordered system to a random network,
recently Watts and Strogatz (WS) have introduced a new model [12], that is often re-
ferred to as small-world network. The topological properties of the network generated
by this model have been the subject of much attention lately [15–27]. The WS model
begins with a one-dimensional lattice of N vertices with bonds between the nearest and
next-nearest neighbors (in general, the algorithm can include neighbors up to an order n,
such that the coordination number of a vertex is z=2n) and periodic boundary condi-
tions (see Fig. 1b). Then each bond is rewired with probability pWS, where rewiring
in this context means shifting one end of the bond to a new vertex chosen at ran-
dom from the whole system, with the constraint that no two vertices can have more
than one bond, and no vertex can have a bond with itself. For pWS = 0 the lattice
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is highly clustered, and the average distance between two vertices 〈l〉 grows linearly
with N , while for pWS = 1 the system becomes a random graph, poorly clustered and
〈l〉 grows logarithmically with N . WS found that in the interval 0¡pWS¡ 0:01 the
model exhibits small-world properties [28,29], (〈l〉 ' 〈l〉random), while it remains highly
clustered.
The connectivity distribution of the WS model depends strongly on pWS: for pWS=0

we have P(k) = �(k − z), where z is the coordination number of the lattice, while for
�nite pWS, P(k) is still peaked around z, but it gets broader. Ultimately, as pWS → 1,
the distribution P(k) approaches the connectivity distribution of a random graph, i.e.
the distribution converges to that obtained for the ER model with pER = z=N (see
Fig. 2b).

3. The scale-free model

A common feature of the models discussed in the previous section is that they both
predict that the probability distribution of the vertex connectivity, P(k), has an expo-
nential cuto�, and has a characteristic size 〈k〉, that depends on p. In contrast, as we
mentioned in the Introduction, many systems in nature have the common property that
P(k) is free of scale, following a power-law distribution over many orders of magni-
tude. To understand the origin of this discrepancy, BA have argued that there are two
generic aspects of real networks that are not incorporated in these models [10]. First,
both models assume that we start with a �xed number (N ) of vertices, that are then
randomly connected (ER model), or reconnected (WS model), without modifying N .
In contrast, most real-world networks are open, i.e. they form by the continuous addi-
tion of new vertices to the system, thus the number of vertices, N , increases throughout
the lifetime of the network. For example, the actor network grows by the addition of
new actors to the system, the www grows exponentially in time by the addition of new
web pages, the research literature constantly grows by the publication of new papers.
Consequently, a common feature of these systems is that the network continuously
expands by the addition of new vertices that are connected to the vertices already
present in the system.
Second, the random network models assume that the probability that two vertices are

connected is random and uniform. In contrast, most real networks exhibit preferential
attachment. For example, a new actor is casted most likely in a supporting role, with
more established, well-known actors. Similarly, a newly created webpage will more
likely include links to well known, popular documents with already high connectivity,
or a new manuscript is more likely to cite a well known and thus much cited paper
than its less cited and consequently less known peer. These examples indicate that the
probability with which a new vertex connects to the existing vertices is not uniform,
but there is a higher probability to be linked to a vertex that already has a large
number of connections. The scale-free model introduced by BA, incorporating only
these two ingredients, naturally leads to the observed scale invariant distribution. The
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Fig. 3. Illustration of the BA model and its variants. (a) BA model for m0 = 3 and m = 2. At t = 0 the
system consists of m0 = 3 isolated vertices. At every timestep a new vertex is added, which is connected
to m= 2 vertices, preferentially to the vertices with high connectivity, determined by the rule (3). Thus, at
t = 2 there are m0 + t = 5 vertices and mt = 4 edges. At t = 3 the sixth vertex is added, the two new edges
being drawn with dashed lines. Due to preferential attachment the new vertex was linked to vertices with
already high connectivity. (b) Model A with m0 = 3 and m = 2. At t = 0 there are m0 = 3 vertices and
no edges. At every timestep a new vertex is added to the system, which is connected randomly to m = 2
vertices already present. As in (a), at t = 2 there are �ve vertices and four edges. At t = 3 the sixth vertex
is added to the system. The two new edges are drawn with dashed lines. Since preferential attachment is
absent, the new vertex connects with equal probability to any vertex in the system. (c) Model B with N =8
vertices. In this model the number of vertices is �xed. At t = 0 there are no edges. At every step a new
edge is introduced, one end being added to a randomly selected vertex, the other end folowing preferential
attachment (3). At t = N there are eight edges in the considered example, while at t = N (N − 1)=2 the
system is fully connected.

model is de�ned in two steps (see Fig. 3):
(1) Growth: Starting with a small number (m0) of vertices, at every timestep we

add a new vertex with m(6m0) edges (that will be connected to the vertices already
present in the system).
(2) Preferential attachment: When choosing the vertices to which the new vertex

connects, we assume that the probability � that a new vertex will be connected to
vertex i depends on the connectivity ki of that vertex, such that

�(ki) = ki

/∑
j

kj : (3)
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Fig. 4. (a) Connectivity distribution of the BA model, with N =m0 + t = 300 000 and m0 =m= 1 (circles),
m0 = m = 3 (squares), m0 = m = 5 (diamonds) and m0 = m = 7 (triangles). The slope of the dashed line
is 
 = 2:9. The inset shows the rescaled distribution (see text) P(k)=2m2 for the same values of m, the
slope of the dashed line being 
 = 3. (b) P(k) for m0 = m = 5 and system sizes N = 100 000 (circles),
N =150 000 (squares) and N =200 000 (diamonds). The inset shows the time-evolution for the connectivity
of two vertices, added to the system at t1 = 5 and t2 = 95. Here m0 =m= 5, and the dashed line has slope
0:5, as predicted by Eq. (6).

After t timesteps the model leads to a random network with N = t + m0 vertices
and mt edges. As Fig. 4a shows, this network evolves into a scale-invariant state,
the probability that a vertex has k edges following a power law with an exponent

model = 2:9 ± 0:1. The scaling exponent is independent of m, the only parameter in
the model. Since the power law observed for real networks describes systems of rather
di�erent sizes at di�erent stages of their development, one expects that a correct model
should provide a distribution whose main features are independent of time. Indeed, as
Fig. 4b demonstrates, P(k) is independent of time (and, subsequently, independent of
the system size N = m0 + t), indicating that despite its continuous growth, the system
organizes itself into a scale-free stationary state.
We next describe a method to calculate analytically the probability P(k), allowing us

to determine exactly the scaling exponent 
. The combination of growth and preferential
attachment leads to an interesting dynamics of the individual vertex connectivities.
The vertices that have the most connections are those that have been added at the
early stages of the network development, since vertices grow proportionally to their
connectedness relative to the rest of the vertices. Thus, some of the oldest vertices have
a very long time to acquire links, being responsible for the high-k part of P(k). The
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time dependence of the connectivity of a given vertex can be calculated analytically
using a mean-�eld approach. We assume that k is continuous, and thus the probability
�(ki)=ki=

∑
j kj can be interpreted as a continuous rate of change of ki. Consequently,

we can write for a vertex i
@ki
@t
= A�(ki) = A

ki∑m0+t−1
j=1 kj

: (4)

Taking into account that
∑

j kj =2mt and the change in connectivities at a timestep is
�k = m, we obtain that A= m, leading to

@ki
@t
=
ki
2t
: (5)

The solution of this equation, with the initial condition that vertex i was added to the
system at time ti with connectivity ki(ti) = m, is

ki(t) = m
(
t
ti

)0:5
: (6)

As the inset of Fig. 4b shows, the numerical results are in good agreement with this
prediction. Thus, older (smaller ti) vertices increase their connectivity at the expense
of the younger (larger ti) vertices, leading with time to some vertices that are highly
connected, a “rich-gets-richer” phenomenon that can be easily detected in real net-
works. Furthermore, this property can be used to calculate 
 analytically. Using (6),
the probability that a vertex has a connectivity ki(t) smaller than k, P(ki(t)¡k), can
be written as

P(ki(t)¡k) = P
(
ti ¿

m2t
k2

)
: (7)

Assuming that we add the vertices at equal time intervals to the system, the probability
density of ti is

Pi(ti) =
1

m0 + t
: (8)

Substituting this into Eq. (4) we obtain that

P
(
ti ¿

m2t
k2

)
= 1− P

(
ti6

m2t
k2

)
= 1− m2t

k2(t + m0)
: (9)

The probability density for P(k) can be obtained using

P(k) =
@P(ki(t)¡k)

@k
=
2m2t
m0 + t

1
k3
; (10)

predicting


= 3 ; (11)

independent of m. Furthermore, Eq. (10) also predicts that the coe�cient A of the
power-law distribution, P(k)∼Ak−
, is proportional to the square of the average con-
nectivity of the network, i.e., A ∼ m2. In the inset of Fig. 4a we show P(k)=2m2 vs. k.
The curves obtained for di�erent m collapse into a single one, supporting the analytical
result (10).



182 A.-L. Barab�asi et al. / Physica A 272 (1999) 173–187

Fig. 5. (a) The connectivity distribution for model A for m0 = m = 1 (circles), m0 = m = 3 (squares),
m0 =m= 5 (diamonds) and m0 =m= 7 (triangles). The system size is N = 800 000. The inset presents the
scaling of the coe�cients B and � (see Eq. (12)) with m, the dashed line following the prediction (18).
(b) Time evolution for the connectivity of two vertices added to the system at t1 = 7 and t2 = 97. Here
m0 = m = 3. The dashed line follows ki(t) = m ln(m0 + t − 1) as predicted by (14).

4. Limiting cases of the scale-free model

4.1. Model A

The development of the power-law scaling in the scale-free model indicates that
growth and preferential attachment play an important role in network development.
To verify that both ingredients are necessary, we investigated two variants of the BA
model. The �rst variant, that we refer to as model A, keeps the growing character of
the network, but preferential attachment is eliminated. The model is de�ned as follows
(see Fig. 3b):
(1) Growth: Starting with a small number of vertices (m0), at every timestep we

add a new vertex with m(6m0) edges.
(2) Uniform attachment: We assume that the new vertex connects with equal proba-

bility to the vertices already present in the system, i.e. �(ki)=1=(m0+t−1), independent
of ki.
Fig. 5a shows the probability P(k) obtained for di�erent values of m, indicating that

in contrast with the scale-free model, P(k) has an exponential form

P(k) = B exp(−�k) (12)
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We can use the mean-�eld arguments developed in the previous section to calculate
analytically the expression for P(k). The rate of change of the connectivity of vertex
i in this case is given by

@ki
@t
= A�(ki) =

A
m0 + t − 1 : (13)

At one timestep �k =m, implying that A=m. Solving the equation for ki, and taking
into account that ki(ti) = m, we obtain

ki = m(ln(m0 + t − 1)− ln(m0 + ti − 1) + 1) ; (14)

a logarithmic increase with time, veri�ed by the numerical simulations (see Fig. 5b).
The probability that vertex i has connectivity ki(t) smaller than k is

P(ki(t)¡k) = P
(
ti ¿ (m0 + t − 1) exp

(
1− k

m

)
− m0 + 1

)
: (15)

Assuming that we add the vertices uniformly to the system, we obtain that

P
(
ti ¿ (m0 + t − 1) exp

(
1− k

m

)
− m0 + 1

)

=1− (m0 + t − 1) exp(1− k=m)− m0 + 1
m0 + t

: (16)

Using Eq. (10) and assuming long times, we obtain

P(k) =
e
m
exp

(
− k
m

)
; (17)

indicating that in (12) the coe�cients are

B=
e
m
; � =

1
m
: (18)

Consequently, the vertices in the model have the characteristic connectivity

k∗ =
1
�
= m ; (19)

which coincides with half of the average connectivity of the vertices in the system,
since 〈k〉 = 2m. As the inset of Fig. 5a demonstrates the numerical results approach
asymptotically the theoretical predictions. The exponential character of the distribu-
tion for this model indicates that the absence of preferential attachment eliminates the
scale-free feature of the BA model.

4.2. Model B

This model tests the hypothesis that the growing character of the model is essential
to sustain the scale-free state observed in the real systems. Model B is de�ned as
follows (see Fig. 3c):
We start with N vertices and no edges. At each timestep we randomly select a vertex

and connect it with probability �(ki) = ki=
∑

j kj to vertex i in the system.
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Fig. 6. (a) The connectivity distribution for model B for N=10000 and t=N (circles), t=5N (squares), and
t=40N (diamonds). (b) Time dependence of the connectivities of two vertices. The system size is N=10000.
The inset shows the connectivities rescaled by N=2t, supporting the theoretical prediction ki(t)N=2t → 1.

Consequently, in comparison with the BA model, this variant eliminates the growth
process, the numbers of vertices staying constant during the network evolution. While
at early times the model exhibits power-law scaling (see Fig. 6, P(k) is not stationary:
Since N is constant, and the number of edges increases with time, after T ' N 2

timesteps the system reaches a state in which all vertices are connected.
The time-evolution of the individual connectivities can be calculated analytically

using the mean-�eld approximation developed for the previous models. The rate of
change of the connectivity of vertex i has two contributions: the �rst describes the
probability that the vertex is chosen randomly as the origin of the link, �random(ki)=1=N
and the second is proportional to �(ki) = ki=

∑
j kj, describing the probability that an

edge originating from a randomly selected vertex is linked to vertex i:

@ki
@t
= A

ki∑N
j=1 kj

+
1
N
: (20)

Taking into account that
∑

j kj = 2t and that the change in connectivities during one

timestep is �k=2, and excluding from the summation edges originating and terminating
in the same vertex, we obtain A= N=(N − 1), leading to

@ki
@t
=

N
N − 1

ki
2t
+
1
N
: (21)
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The solution of this equation has the form

ki(t) =
2(N − 1)
N (N − 2) t + Ct

N=2(N−1) : (22)

Since N/1, we can approximate ki with

ki(t) =
2
N
t + Ct1=2 : (23)

Since the number of vertices is constant, we do not have “introduction times” ti for
the vertices. There exists, however, a time analogous to ti: the time when vertex i was
selected for the �rst time as the origin of an edge, and consequently its connectivity
changed from 0 to 1. Eq. (22) is valid only for t ¿ ti, and all vertices will follow this
dynamics only after t¿N . The constant C can be determined from the condition that∑

j kj = 2t, and has the value

C = 0 ; (24)

thus

ki(t) ' 2
N
t : (25)

The numerical results shown in Fig. 6b agree well with this prediction, indicating that
after a transient time of duration t ' N the connectivity increases linearly with time.
Since the mean-�eld approximation used above predicts that after a transient period

the connectivities of all vertices should have the same value given by Eq. (25), we
expect that the connectivity distribution becomes a Gaussian around its mean value.
Indeed, Fig. 6a illustrates that as time increases, the shape of P(k) changes from the
initial power law to a Gaussian.
The failure of models A and B to lead to a scale-free distribution indicates that both

ingredients, namely growth and preferential attachment, are needed to reproduce the
stationary power-law distribution observed in real networks.

5. Discussion and conclusions

In the following we discuss some of the immediate extensions of the present work.
(i) A major assumption in the model was the use of a linear relationship between

�(ki) and ki, given by (3). However, at this point there is nothing to guarantee us
that �(k) is linear, i.e. in general we could assume that �(k) ∼ k�, where � 6= 1. The
precise form of �(k) could be determined numerically by comparing the topology of
real networks at not too distant times. In the absence of such data, the linear relationship
seems to be the most e�cient way to go. In principle, if nonlinearities are present (i.e.
� 6= 1), that could a�ect the nature of the power-law scaling. This problem will be
addressed in future work [30].
(ii) An another quantity that could be tested explicitly is the time evolution of con-

nectivities in real networks. For the scale-free model we obtained that the connectivity
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increases as a power of time (see Eq. (6)). For model A we found logarithmic time de-
pendence (Eq. (14)), while for model B linear (Eq. (25)). Furthermore, if we introduce
pER =at in the ER model, one can easily show that 〈k〉ER(t) ∼ t. If time-resolved data
on network connectivity becomes available, these predictions could be explicitly tested
for real networks, allowing us to distinguish between the di�erent growth mechanisms.
(iii) In the model we assumed that new links appear only when new vertices are

added to the system. In many real systems, including the movie actor networks or the
www, links are added continuously. Our model can be easily extended to incorporate
the addition of new edges. Naturally, if we add too many edges, the system becomes
fully connected. However, in most systems the addition of new vertices (and the growth
of the system) competes with the addition of new internal links. As long as the growth
rate is large enough, we believe that the system will remain in the universality class
of the BA model, and will continue to display scale-free features.
(iv) Naturally, in some systems we might witness the reconnection or rewiring of the

existing links. Thus some links, that were added when a new vertex was added to the
system, will break and reconnect with other vertices, probably still obeying preferential
attachment. If reattachment dominates over growth (i.e. addition of new links by new
vertices), the system will undergo a process similar to ripening: the very connected
sites will acquire all links. This will destroy the power-law scaling in the system.
However, similarly to case (iii) above, as long as the growth process dominates the
dynamics of the system, we expect that the scale-free state will prevail.
(v) The above discussion indicates that there are a number of “end-states” or ab-

sorbing states for random networks, that include the scale-free state, when power-law
scaling prevails at all times, the fully connected state, which will be the absorbing
state of the ER model for large p, and the ripened state, which will characterize the
system described in point (iv). Note that the end state of the WS model, obtained for
pWS = 1, is the ER model for pER = z=N . The precise nature of the transition between
these states is still an open question, and will be the subject of future studies [30].
(vi) Finally, the concept of universality classes has not been properly explored yet

in the context of random network models. For this we have to de�ne scaling expo-
nents that can be measured for all random networks, whether they are generated by
a model or a natural process. The clustering of these exponents for di�erent systems
might indicate that there are a few generic universality classes characterizing complex
networks. Such studies have the potential to lead to a better understanding of the nature
and growth of random networks in general.
Growth and preferential attachment are mechanisms common to a number of com-

plex systems, including business networks [31], social networks (describing individuals
or organizations), transportation networks [32], etc. Consequently, we expect that the
scale-invariant state, observed in all systems for which detailed data has been available
to us, is a generic property of many complex networks, its applicability reaching far
beyond the quoted examples. A better description of these systems would help in under-
standing other complex systems as well, for which so far less topological information
is available, including such important examples as genetic or signaling networks in
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biological systems. Similar mechanisms could explain the origin of the social and eco-
nomic disparities governing competitive systems, since the scale-free inhomogeneities
are the inevitable consequence of self-organization due to the local decisions made by
the individual vertices, based on information that is biased towards the more visible
(richer) vertices, irrespective of the nature and the origin of this visibility.
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